Answer :
To simplify the expression [tex]\( 8^{-7} \cdot 8^5 \)[/tex] and express it using only positive exponents, follow these steps:
1. Use the properties of exponents:
Recall that when multiplying exponential expressions with the same base, you can add the exponents. That is,
[tex]\[ a^m \times a^n = a^{m+n} \][/tex]
Here, we have the base [tex]\(8\)[/tex] and the exponents [tex]\(-7\)[/tex] and [tex]\(5\)[/tex].
2. Add the exponents:
Add the exponents [tex]\(-7\)[/tex] and [tex]\(5\)[/tex]:
[tex]\[ -7 + 5 = -2 \][/tex]
3. Re-write the expression:
Combine the base [tex]\(8\)[/tex] with the new exponent:
[tex]\[ 8^{-7} \cdot 8^5 = 8^{-2} \][/tex]
4. Express using positive exponents:
To express [tex]\(8^{-2}\)[/tex] with a positive exponent, use the property of exponents that states [tex]\( a^{-n} = \frac{1}{a^n} \)[/tex]:
[tex]\[ 8^{-2} = \frac{1}{8^2} \][/tex]
Therefore, the simplified expression, using only positive exponents, is:
[tex]\[ \frac{1}{8^2} \][/tex]
So, the final answer after simplifying [tex]\( 8^{-7} \cdot 8^5 \)[/tex] and expressing it with positive exponents is:
[tex]\[ \frac{1}{8^2} \][/tex]
1. Use the properties of exponents:
Recall that when multiplying exponential expressions with the same base, you can add the exponents. That is,
[tex]\[ a^m \times a^n = a^{m+n} \][/tex]
Here, we have the base [tex]\(8\)[/tex] and the exponents [tex]\(-7\)[/tex] and [tex]\(5\)[/tex].
2. Add the exponents:
Add the exponents [tex]\(-7\)[/tex] and [tex]\(5\)[/tex]:
[tex]\[ -7 + 5 = -2 \][/tex]
3. Re-write the expression:
Combine the base [tex]\(8\)[/tex] with the new exponent:
[tex]\[ 8^{-7} \cdot 8^5 = 8^{-2} \][/tex]
4. Express using positive exponents:
To express [tex]\(8^{-2}\)[/tex] with a positive exponent, use the property of exponents that states [tex]\( a^{-n} = \frac{1}{a^n} \)[/tex]:
[tex]\[ 8^{-2} = \frac{1}{8^2} \][/tex]
Therefore, the simplified expression, using only positive exponents, is:
[tex]\[ \frac{1}{8^2} \][/tex]
So, the final answer after simplifying [tex]\( 8^{-7} \cdot 8^5 \)[/tex] and expressing it with positive exponents is:
[tex]\[ \frac{1}{8^2} \][/tex]