How many molecules are in 4 moles of [tex]H_2O[/tex]?

A. [tex]6.02 \times 10^{24}[/tex]
B. [tex]2.408 \times 10^{24}[/tex]
C. [tex]7.224 \times 10^{24}[/tex]
D. [tex]2.408 \times 10^{23}[/tex]



Answer :

To determine how many molecules are in 4 moles of [tex]\( H_2O \)[/tex], we can use Avogadro's number, which tells us the number of molecules in one mole of any substance. Avogadro's number is [tex]\( 6.02 \times 10^{23} \)[/tex] molecules per mole.

Here is the step-by-step solution:

1. Identify Avogadro's number:
Avogadro's number [tex]\( N_A \)[/tex] is [tex]\( 6.02 \times 10^{23} \)[/tex] molecules per mole.

2. Identify the number of moles:
We are given 4 moles of [tex]\( H_2O \)[/tex].

3. Calculate the number of molecules in the given moles:
Multiply the number of moles by Avogadro's number.

[tex]\[ \text{Number of molecules} = \text{Number of moles} \times N_A \][/tex]

For 4 moles of [tex]\( H_2O \)[/tex]:

[tex]\[ \text{Number of molecules} = 4 \text{ moles} \times 6.02 \times 10^{23} \text{ molecules/mole} \][/tex]

4. Perform the multiplication:

[tex]\[ 4 \times 6.02 \times 10^{23} = 2.408 \times 10^{24} \][/tex]

So, the number of molecules in 4 moles of [tex]\( H_2O \)[/tex] is [tex]\( 2.408 \times 10^{24} \)[/tex].

The correct answer is:
B. [tex]\( 2.408 \times 10^{24} \)[/tex]