Match the expression on the left with its simplified form on the right. Answer options on the right may be used more than once.

[tex]\[
\begin{array}{ll}
(-5) & -5 \\
|-5| & 5 \\
|5| & 5 \\
-|5| & -5 \\
-|-5| & -5 \\
\end{array}
\][/tex]



Answer :

Sure, I will match each expression on the left with its appropriate simplified form on the right, explaining each step along the way.

1. Simplifying [tex]\( (-5) \)[/tex]:
- When you have parentheses around a negative number, [tex]\( (-5) \)[/tex] simply evaluates to [tex]\(-5\)[/tex].
- Answer: [tex]\( (-5) = -5 \)[/tex].

2. Simplifying [tex]\( |-5| \)[/tex]:
- The absolute value of a number [tex]\( |-5| \)[/tex] is the distance from zero, regardless if it's positive or negative. Hence, [tex]\( |-5| = 5 \)[/tex].
- Answer: [tex]\( |-5| = 5 \)[/tex].

3. Simplifying [tex]\( |5| \)[/tex]:
- Similar to the previous absolute value, [tex]\( |5| \)[/tex] is the distance from zero, so [tex]\( |5| = 5 \)[/tex].
- Answer: [tex]\( |5| = 5 \)[/tex].

4. Simplifying [tex]\( -|5| \)[/tex]:
- First, calculate the absolute value inside. [tex]\( |5| = 5 \)[/tex].
- Then apply the negative sign outside, so [tex]\( -|5| = -5 \)[/tex].
- Answer: [tex]\( -|5| = -5 \)[/tex].

5. Simplifying [tex]\( -|-5| \)[/tex]:
- First, calculate the absolute value inside. [tex]\( |-5| = 5 \)[/tex].
- Then apply the negative sign outside, so [tex]\( -|-5| = -5 \)[/tex].
- Answer: [tex]\( -|-5| = -5 \)[/tex].

So, matching each expression with its simplified form:

[tex]\[ \begin{array}{ll} (-5) & -5 \\ |-5| & 5 \\ |5| & 5 \\ -|5| & -5 \\ -|-5| & -5 \\ \end{array} \][/tex]