Answer :
To solve this problem, we will first convert the total amount of money into cents and then calculate how many erasers can be bought within the limit of [tex]$50, following the provided cost structure.
1. Convert dollars to cents:
\[
50 \text{ dollars} = 50 \times 100 = 5000 \text{ cents}
\]
2. Cost structure:
- The first 250 erasers cost 8¢ each.
- The next 250 erasers cost 7¢ each.
- Any erasers beyond 500 cost 5¢ each.
Step-by-step calculation:
1. Calculate the cost for the first 250 erasers:
\[
250 \text{ erasers} \times 8 \text{ cents each} = 250 \times 8 = 2000 \text{ cents}
\]
2. Subtract the cost of the first 250 erasers from the total money:
\[
5000 \text{ cents} - 2000 \text{ cents} = 3000 \text{ cents remaining}
\]
3. Calculate the cost for the next 250 erasers:
\[
250 \text{ erasers} \times 7 \text{ cents each} = 250 \times 7 = 1750 \text{ cents}
\]
4. Subtract the cost of the next 250 erasers from the remaining money:
\[
3000 \text{ cents} - 1750 \text{ cents} = 1250 \text{ cents remaining}
\]
5. Calculate how many additional erasers can be bought with the remaining money at 5¢ each:
\[
\frac{1250 \text{ cents}}{5 \text{ cents per eraser}} = 250 \text{ erasers}
\]
6. Add up the total number of erasers:
\[
250 \text{ (first batch)} + 250 \text{ (second batch)} + 250 \text{ (additional)} = 750 \text{ erasers}
\]
Hence, the total number of erasers that can be purchased for $[/tex]50 is:
[tex]\[ \boxed{750} \][/tex]
[tex]\[ \boxed{750} \][/tex]