Change [tex]\(2 \frac{7}{9}\)[/tex] from a mixed number to an improper fraction.

A. [tex]\(\frac{21}{9}\)[/tex]

B. [tex]\(\frac{23}{9}\)[/tex]

C. [tex]\(\frac{9}{25}\)[/tex]

D. [tex]\(\frac{25}{9}\)[/tex]



Answer :

To convert a mixed number to an improper fraction, follow these steps:

1. Identify the whole number and the fractional part of the mixed number. For [tex]\( 2 \frac{7}{9} \)[/tex], the whole number is [tex]\( 2 \)[/tex] and the fractional part is [tex]\( \frac{7}{9} \)[/tex].

2. Convert the whole number into a fraction with the same denominator as the fractional part. Since the denominator is [tex]\( 9 \)[/tex], we multiply the whole number [tex]\( 2 \)[/tex] by [tex]\( 9 \)[/tex] to get:
[tex]\[ 2 \times 9 = 18 \][/tex]

3. Add the result to the numerator of the fractional part. The numerator of the fractional part is [tex]\( 7 \)[/tex], so we add:
[tex]\[ 18 + 7 = 25 \][/tex]

4. Keep the same denominator, which is [tex]\( 9 \)[/tex].

Thus, the mixed number [tex]\( 2 \frac{7}{9} \)[/tex] as an improper fraction is:
[tex]\[ \frac{25}{9} \][/tex]

Therefore, the correct answer is:
[tex]\[ \frac{25}{9} \][/tex]