Answer :
अब हामी निम्न समीकरणलाई हल गर्छौं:
[tex]\[ 7^x + 7^{-x} = 7 + \frac{1}{7} \][/tex]
सबसे पहले, [tex]\(7 + \frac{1}{7}\)[/tex]लाई सरलीकृत गरौं:
[tex]\[ 7 + \frac{1}{7} = \frac{49}{7} + \frac{1}{7} = \frac{50}{7} \][/tex]
त्यसैले समीकरण अब यस्तो हुन्छ:
[tex]\[ 7^x + 7^{-x} = \frac{50}{7} \][/tex]
अब हामी [tex]\(y = 7^x\)[/tex] मानक:
[tex]\[ y + \frac{1}{y} = \frac{50}{7} \][/tex]
अब हरेक पदलाई [tex]\(y\)[/tex] द्वारा गुणा गरौं ताकि भागबाट मुक्त हुन सकोस्:
[tex]\[ y^2 + 1 = \frac{50y}{7} \][/tex]
अब हरेक पदलाई [tex]\(7\)[/tex]ले गुणा गरौ:
[tex]\[ 7y^2 + 7 = 50y \][/tex]
अब पुन: व्यवस्थापन गरेर quadratic समीकरणको रूपमा ल्याउँछौं:
[tex]\[ 7y^2 - 50y + 7 = 0 \][/tex]
यस quadratic समीकरणलाई हल गर्न quadratic formula प्रयोग गर्छौ:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
यहाँ, [tex]\(a = 7\)[/tex], [tex]\(b = -50\)[/tex], र [tex]\(c = 7\)[/tex]
पहिले discriminant गणना गर्छौं:
[tex]\[ b^2 - 4ac = (-50)^2 - 4(7)(7) = 2500 - 196 = 2304 \][/tex]
अब discriminant को वर्गमूल निकालौं:
[tex]\[ \sqrt{2304} = 48 \][/tex]
अब [tex]\(y\)[/tex] को दुई संभव मान निकालौं:
[tex]\[ y_1 = \frac{-(-50) + 48}{2 \cdot 7} = \frac{50 + 48}{14} = \frac{98}{14} = 7 \][/tex]
[tex]\[ y_2 = \frac{-(-50) - 48}{2 \cdot 7} = \frac{50 - 48}{14} = \frac{2}{14} = \frac{1}{7} \][/tex]
अब [tex]\(y = 7^x\)[/tex] थियो, त्यसैले:
[tex]\[ 7^x = 7 \rightarrow x = 1 \][/tex]
[tex]\[ 7^x = \frac{1}{7} \rightarrow x = -1 \][/tex]
अन्ततः, हामीलाई समाधानहरु प्राप्त भए:
[tex]\[ x = 1 \][/tex]
[tex]\[ x = -1 \][/tex]
यसरी, [tex]\(7^x + 7^{-x} = 7 + \frac{1}{7}\)[/tex] को हलहरू [tex]\(x = 1\)[/tex] र [tex]\(x = -1\)[/tex] हुन्।
[tex]\[ 7^x + 7^{-x} = 7 + \frac{1}{7} \][/tex]
सबसे पहले, [tex]\(7 + \frac{1}{7}\)[/tex]लाई सरलीकृत गरौं:
[tex]\[ 7 + \frac{1}{7} = \frac{49}{7} + \frac{1}{7} = \frac{50}{7} \][/tex]
त्यसैले समीकरण अब यस्तो हुन्छ:
[tex]\[ 7^x + 7^{-x} = \frac{50}{7} \][/tex]
अब हामी [tex]\(y = 7^x\)[/tex] मानक:
[tex]\[ y + \frac{1}{y} = \frac{50}{7} \][/tex]
अब हरेक पदलाई [tex]\(y\)[/tex] द्वारा गुणा गरौं ताकि भागबाट मुक्त हुन सकोस्:
[tex]\[ y^2 + 1 = \frac{50y}{7} \][/tex]
अब हरेक पदलाई [tex]\(7\)[/tex]ले गुणा गरौ:
[tex]\[ 7y^2 + 7 = 50y \][/tex]
अब पुन: व्यवस्थापन गरेर quadratic समीकरणको रूपमा ल्याउँछौं:
[tex]\[ 7y^2 - 50y + 7 = 0 \][/tex]
यस quadratic समीकरणलाई हल गर्न quadratic formula प्रयोग गर्छौ:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
यहाँ, [tex]\(a = 7\)[/tex], [tex]\(b = -50\)[/tex], र [tex]\(c = 7\)[/tex]
पहिले discriminant गणना गर्छौं:
[tex]\[ b^2 - 4ac = (-50)^2 - 4(7)(7) = 2500 - 196 = 2304 \][/tex]
अब discriminant को वर्गमूल निकालौं:
[tex]\[ \sqrt{2304} = 48 \][/tex]
अब [tex]\(y\)[/tex] को दुई संभव मान निकालौं:
[tex]\[ y_1 = \frac{-(-50) + 48}{2 \cdot 7} = \frac{50 + 48}{14} = \frac{98}{14} = 7 \][/tex]
[tex]\[ y_2 = \frac{-(-50) - 48}{2 \cdot 7} = \frac{50 - 48}{14} = \frac{2}{14} = \frac{1}{7} \][/tex]
अब [tex]\(y = 7^x\)[/tex] थियो, त्यसैले:
[tex]\[ 7^x = 7 \rightarrow x = 1 \][/tex]
[tex]\[ 7^x = \frac{1}{7} \rightarrow x = -1 \][/tex]
अन्ततः, हामीलाई समाधानहरु प्राप्त भए:
[tex]\[ x = 1 \][/tex]
[tex]\[ x = -1 \][/tex]
यसरी, [tex]\(7^x + 7^{-x} = 7 + \frac{1}{7}\)[/tex] को हलहरू [tex]\(x = 1\)[/tex] र [tex]\(x = -1\)[/tex] हुन्।