Find a value of [tex]\theta[/tex] in the interval [tex]0^{\circ} \leq \theta \leq 90^{\circ}[/tex] that satisfies the given statement.

[tex]\sin \theta = 0.68375982[/tex]

[tex]\theta \approx \square 7^{\circ}[/tex]

(Simplify your answer. Type an integer or a decimal. Round to six decimal places if needed.)



Answer :

To find the value of [tex]\(\theta\)[/tex] in the interval [tex]\(0^\circ \leq \theta \leq 90^\circ\)[/tex] that satisfies the equation [tex]\(\sin \theta = 0.68375982\)[/tex], we need to determine [tex]\(\theta\)[/tex] such that:

[tex]\[ \theta = \sin^{-1}(0.68375982) \][/tex]

The inverse sine function, also known as arcsine, will give us the angle whose sine is the given value. We use a calculator to determine this angle in degrees.

Given the value [tex]\(\sin \theta = 0.68375982\)[/tex]:

[tex]\[ \theta = \sin^{-1}(0.68375982) \approx 43.138151907853036^\circ \][/tex]

To provide a simplified answer, we round the result to six decimal places:

[tex]\[ \theta \approx 43.138152^\circ \][/tex]

Therefore, the value of [tex]\(\theta\)[/tex] that satisfies [tex]\(\sin \theta = 0.68375982\)[/tex] within the interval [tex]\(0^\circ \leq \theta \leq 90^\circ\)[/tex] is:

[tex]\[ \theta \approx 43.138152^\circ \][/tex]