According to the property [tex]\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}[/tex], which choice is equivalent to the quotient below?

[tex]\frac{\sqrt{30}}{\sqrt{5}}[/tex]

A. 36
B. [tex]-\sqrt{6}[/tex]
C. 6
D. -6
E. [tex]\sqrt{6}[/tex]



Answer :

To find the equivalent of the given quotient [tex]\(\frac{\sqrt{30}}{\sqrt{5}}\)[/tex], we can use the property that [tex]\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)[/tex].

Let's apply this property step-by-step:

1. Write the Original Expression:
[tex]\[ \frac{\sqrt{30}}{\sqrt{5}} \][/tex]

2. Apply the Property [tex]\(\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}\)[/tex]:
[tex]\[ \frac{\sqrt{30}}{\sqrt{5}} = \sqrt{\frac{30}{5}} \][/tex]

3. Simplify the Fraction Inside the Square Root:
[tex]\[ \frac{30}{5} = 6 \][/tex]

4. Express the Result as a Square Root:
[tex]\[ \sqrt{\frac{30}{5}} = \sqrt{6} \][/tex]

Thus, the equivalent expression for [tex]\(\frac{\sqrt{30}}{\sqrt{5}}\)[/tex] is [tex]\(\sqrt{6}\)[/tex].

Comparing this with the given choices:
- A. 36 (Incorrect)
- B. [tex]\(-\sqrt{6}\)[/tex] (Incorrect)
- C. 6 (Incorrect)
- D. -6 (Incorrect)
- E. [tex]\(\sqrt{6}\)[/tex] (Correct)

Therefore, the correct choice is [tex]\( \boxed{\sqrt{6}} \)[/tex].