Follow the steps to convert this equation from point-slope form to slope-intercept form.

Isolate [tex]\( y \)[/tex] to get it in the form [tex]\( y = mx + b \)[/tex].

[tex]\[
\begin{aligned}
y - 4 & = -3(x - 2) \\
y - 4 & = -3x + 6 \\
y & = -3x + 6 + 4 \\
y & = -3x + 10
\end{aligned}
\][/tex]



Answer :

Certainly! Let's follow the steps to convert the given point-slope form equation to the slope-intercept form.

Start with the given equation in point-slope form:
[tex]\[ y - 4 = -3(x - 2) \][/tex]

1. Distribute the [tex]\(-3\)[/tex] on the right-hand side:
[tex]\[ y - 4 = -3x + 6 \][/tex]

2. To isolate [tex]\( y \)[/tex], add 4 to both sides:
[tex]\[ y - 4 + 4 = -3x + 6 + 4 \][/tex]

3. Simplify the equation by combining like terms:
[tex]\[ y = -3x + 10 \][/tex]

So, the equation in slope-intercept form [tex]\( y = mx + b \)[/tex] is:
[tex]\[ y = -3x + 10 \][/tex]

From this equation, we can identify the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex]:
[tex]\[ m = -3 \][/tex]
[tex]\[ b = 10 \][/tex]

So the values are:
[tex]\[ \boxed{-3, 10} \][/tex]