Solve for the indicated variable.

[tex]\[ q = \frac{c}{4}(h+r) \quad \text{for} \quad r \][/tex]

Select one:
a. [tex]\( r = \frac{4c}{q} - h \)[/tex]
b. [tex]\( r = \frac{q}{4c} - h \)[/tex]
c. [tex]\( r = \frac{4q - h}{c} \)[/tex]
d. [tex]\( r = \frac{4q}{c} - h \)[/tex]



Answer :

To solve for the variable [tex]\( r \)[/tex] in the given equation [tex]\( q = \frac{c}{4}(h + r) \)[/tex], follow these steps:

1. Clear the fraction:
Multiply both sides of the equation by 4 in order to eliminate the fraction.
[tex]\[ 4q = c(h + r) \][/tex]

2. Isolate the term containing [tex]\( r \)[/tex]:
To isolate [tex]\( r \)[/tex], divide both sides of the equation by [tex]\( c \)[/tex].
[tex]\[ \frac{4q}{c} = h + r \][/tex]

3. Solve for [tex]\( r \)[/tex]:
Subtract [tex]\( h \)[/tex] from both sides of the equation to isolate [tex]\( r \)[/tex].
[tex]\[ r = \frac{4q}{c} - h \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{d. \ r = \frac{4q}{c} - h} \][/tex]