Factor the polynomial completely.

[tex]\[ 81x^2 - 16 \][/tex]

A. [tex]\((81x + 1)(x - 16)\)[/tex]

B. [tex]\((9x - 4)^2\)[/tex]

C. [tex]\((9x + 4)^2\)[/tex]

D. [tex]\((9x + 4)(9x - 4)\)[/tex]



Answer :

To factor the polynomial [tex]\(81x^2 - 16\)[/tex] completely, follow these steps:

1. Recognize the Form:
Notice that [tex]\(81x^2 - 16\)[/tex] corresponds to the general form of a difference of squares, which is [tex]\(a^2 - b^2\)[/tex].

2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
Here, [tex]\(81x^2\)[/tex] is the square of [tex]\(9x\)[/tex] and [tex]\(16\)[/tex] is the square of [tex]\(4\)[/tex]. So, we can set:
[tex]\[ a = 9x \quad \text{and} \quad b = 4 \][/tex]

3. Apply the Difference of Squares Formula:
The difference of squares formula states:
[tex]\[ a^2 - b^2 = (a + b)(a - b) \][/tex]
Using the identified values for [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:

[tex]\[ 81x^2 - 16 = (9x)^2 - 4^2 = (9x + 4)(9x - 4) \][/tex]

Therefore, the complete factorization of [tex]\(81x^2 - 16\)[/tex] is:
[tex]\[ (9x + 4)(9x - 4) \][/tex]

So, the correct answer is:
D. [tex]\((9x + 4)(9x - 4)\)[/tex]