Express the formula [tex]d = rt[/tex] in terms of the time, [tex]t[/tex]. Use your formula to find the time when the distance is 40 and the rate is 8.

A. [tex]t = \frac{r}{d} ; \, t = 0.2[/tex]

B. [tex]t = \frac{d}{r} ; \, t = 5[/tex]

C. [tex]t = dr ; \, t = 320[/tex]

D. [tex]t = d - r ; \, t = 32[/tex]



Answer :

Certainly! Let's express the formula [tex]\( d = r \cdot t \)[/tex] in terms of [tex]\( t \)[/tex] and solve for [tex]\( t \)[/tex] given specific values for distance [tex]\( d \)[/tex] and rate [tex]\( r \)[/tex].

1. Start with the given formula:
[tex]\[ d = r \cdot t \][/tex]

2. To solve for [tex]\( t \)[/tex], we need to isolate [tex]\( t \)[/tex]. We do this by dividing both sides of the equation by [tex]\( r \)[/tex]:
[tex]\[ t = \frac{d}{r} \][/tex]

3. Now that we have the formula in terms of [tex]\( t \)[/tex], we can plug in the given values for [tex]\( d \)[/tex] and [tex]\( r \)[/tex]:
- Distance [tex]\( d = 40 \)[/tex]
- Rate [tex]\( r = 8 \)[/tex]

4. Substitute [tex]\( d \)[/tex] and [tex]\( r \)[/tex] into the formula:
[tex]\[ t = \frac{40}{8} \][/tex]

5. Perform the division:
[tex]\[ t = 5 \][/tex]

So, the time [tex]\( t \)[/tex] when the distance is 40 and the rate is 8 is:
[tex]\[ t = 5 \][/tex]