Find the radian measure of angle [tex]\(\theta\)[/tex], if [tex]\(\theta\)[/tex] is the central angle in a circle of radius [tex]\(r\)[/tex], and [tex]\(\theta\)[/tex] cuts off an arc of length [tex]\(s\)[/tex].

Given:
[tex]\[ r = 5 \text{ inches} \][/tex]
[tex]\[ s = 10 \text{ inches} \][/tex]

[tex]\[
\theta = \boxed{2 \text{ radians}}
\][/tex]



Answer :

To find the radian measure of the angle [tex]\(\theta\)[/tex], given that [tex]\(\theta\)[/tex] is the central angle in a circle with radius [tex]\(r\)[/tex] and it cuts off an arc of length [tex]\(s\)[/tex], we will use the relationship between the central angle in radians, the radius, and the arc length. The formula for this relationship is:

[tex]\[ \theta = \frac{s}{r} \][/tex]

where:
- [tex]\(\theta\)[/tex] is the central angle in radians,
- [tex]\(s\)[/tex] is the arc length,
- [tex]\(r\)[/tex] is the radius of the circle.

Given:
- [tex]\(r = 5\)[/tex] inches,
- [tex]\(s = 10\)[/tex] inches,

we can substitute these values into the formula:

[tex]\[ \theta = \frac{10 \text{ inches}}{5 \text{ inches}} \][/tex]

Simplifying this expression:

[tex]\[ \theta = \frac{10}{5} = 2 \][/tex]

Thus, the radian measure of the angle [tex]\(\theta\)[/tex] is:

[tex]\[ \theta = 2 \][/tex]

So, the radian measure of angle [tex]\(\theta\)[/tex] is [tex]\(2\)[/tex].