Question 10

Graphing Using a Calculator

Instructions: Use a graphing calculator to approximate the zeros of the function. Round to one decimal place if necessary. Fill in the solutions.

[tex]\[
\begin{array}{l}
\quad y = -x^2 + 8x + 10 \\
\text{Vertex: (4, 26)} \\
\text{Solutions: } (\square, 0) \text{ and } (\square, 0)
\end{array}
\][/tex]

---

Question 11

Graphing Using a Calculator



Answer :

To approximate the zeros and find the vertex of the function [tex]\( y = -x^2 + 8x + 10 \)[/tex] using a graphing calculator, follow these steps:

### Step-by-Step Solution:

1. Identify the function to graph:
[tex]\[ y = -x^2 + 8x + 10 \][/tex]

2. Vertex Calculation:
The vertex form of a quadratic function [tex]\( ax^2 + bx + c \)[/tex] is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting [tex]\( a = -1 \)[/tex] and [tex]\( b = 8 \)[/tex], we get:
[tex]\[ x = -\frac{8}{2 \cdot -1} = 4 \][/tex]
To find the y-coordinate of the vertex, substitute [tex]\( x = 4 \)[/tex] back into the function:
[tex]\[ y = -4^2 + 8(4) + 10 = -16 + 32 + 10 = 26 \][/tex]
Therefore, the vertex is [tex]\( (4, 26) \)[/tex].

3. Calculate the zeros of the function:
To find the zeros, set [tex]\( y \)[/tex] to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 0 = -x^2 + 8x + 10 \][/tex]
Solving this quadratic equation, we get:
[tex]\[ -x^2 + 8x + 10 = 0 \][/tex]
Rearrange the equation to:
[tex]\[ x^2 - 8x - 10 = 0 \][/tex]
Using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = -10 \)[/tex], we find:
[tex]\[ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(-10)}}{2(1)} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 + 40}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{104}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm 2\sqrt{26}}{2} \][/tex]
[tex]\[ x = 4 \pm \sqrt{26} \][/tex]

4. Approximate the zeros:
[tex]\[ x_1 = 4 - \sqrt{26} \][/tex]
[tex]\[ x_2 = 4 + \sqrt{26} \][/tex]

These approximate values are:
[tex]\[ x_1 \approx 4 - 5.1 = -1.1 \][/tex]
[tex]\[ x_2 \approx 4 + 5.1 = 9.1 \][/tex]

### Conclusion:
From the calculations:
- The vertex of the function [tex]\( y = -x^2 + 8x + 10 \)[/tex] is at [tex]\((4, 26)\)[/tex].
- The zeros of the function are approximately [tex]\((-1.1, 0)\)[/tex] and [tex]\((9.1, 0)\)[/tex].

Therefore, the filled solution is:

[tex]\[ \begin{array}{l} \qquad y=-x^2+8 x+10 \\ \text { Vertex: ( } 4,26 \text { ) } \\ \text { Solutions: } (-1.1, 0) \text { ) and } (9.1, 0 \text { ) } \end{array} \][/tex]