Determine which integer makes the inequality [tex]6(n-5)\ \textless \ 3(n+4)[/tex] true.

A. [tex]\{11\}[/tex]
B. [tex]\{14\}[/tex]
C. [tex]\{30\}[/tex]
D. [tex]\{42\}[/tex]



Answer :

To determine which integer [tex]\( n \)[/tex] makes the inequality [tex]\( 6(n-5) < 3(n+4) \)[/tex] true, let's solve the inequality step by step:

1. Start with the given inequality:
[tex]\[ 6(n-5) < 3(n+4) \][/tex]

2. Distribute the constants inside the parentheses:
[tex]\[ 6n - 30 < 3n + 12 \][/tex]

3. To isolate [tex]\( n \)[/tex], we need to get all the [tex]\( n \)[/tex]-terms on one side and the constant terms on the other. Subtract [tex]\( 3n \)[/tex] from both sides:
[tex]\[ 6n - 3n - 30 < 12 \][/tex]

Simplify:
[tex]\[ 3n - 30 < 12 \][/tex]

4. Next, add 30 to both sides to isolate the [tex]\( n \)[/tex]-term:
[tex]\[ 3n - 30 + 30 < 12 + 30 \][/tex]

Simplify:
[tex]\[ 3n < 42 \][/tex]

5. Finally, divide both sides by 3 to solve for [tex]\( n \)[/tex]:
[tex]\[ \frac{3n}{3} < \frac{42}{3} \][/tex]

Simplify:
[tex]\[ n < 14 \][/tex]

Therefore, the inequality [tex]\( 6(n-5) < 3(n+4) \)[/tex] is true for values of [tex]\( n \)[/tex] less than 14.

Now, we check the given integers:
- [tex]\( 11 \)[/tex]: [tex]\( 11 < 14 \)[/tex] (True)
- [tex]\( 14 \)[/tex]: [tex]\( 14 < 14 \)[/tex] (False)
- [tex]\( 30 \)[/tex]: [tex]\( 30 < 14 \)[/tex] (False)
- [tex]\( 42 \)[/tex]: [tex]\( 42 < 14 \)[/tex] (False)

Thus, the integer from the given set that satisfies the inequality is [tex]\( 11 \)[/tex].