2. An object is launched at 19.6 meters per second [tex]$(m/s)$[/tex] from a 58.8-meter tall platform. The equation for the object's height [tex]\( s \)[/tex] at time [tex]\( t \)[/tex] seconds after launch is [tex]\( s(t) = -4.9 t^2 + 19.6 t + 58.8 \)[/tex], where [tex]\( s \)[/tex] is in meters. Which of the following is a table of values that will help graph this function?

\begin{tabular}{|c|c|}
\hline
[tex]$t$[/tex] & [tex]$s(t)$[/tex] \\
\hline
0 & 58.8 \\
\hline
1 & 54.39 \\
\hline
2 & 1.96 \\
\hline
3 & -98.49 \\
\hline
4 & -246.96 \\
\hline
5 & -443.45 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$t$[/tex] & [tex]$s(t)$[/tex] \\
\hline
0 & 58.8 \\
\hline
1 & 83.3 \\
\hline
2 & 117.6 \\
\hline
3 & 161.7 \\
\hline
4 & 215.6 \\
\hline
5 & 279.3 \\
\hline
\end{tabular}



Answer :

To determine which table of values correctly represents the function [tex]\( s(t) = -4.9 t^2 + 19.6 t + 58.8 \)[/tex], we need to evaluate the given function at several specific points in time [tex]\( t \)[/tex].

Here's how the function behaves at the specified times:

Step-by-Step Calculation for Each [tex]\( t \)[/tex]:

1. At [tex]\( t = 0 \)[/tex]:
[tex]\[ s(0) = -4.9(0)^2 + 19.6(0) + 58.8 = 58.8 \][/tex]
So, [tex]\( s(0) = 58.8 \)[/tex].

2. At [tex]\( t = 1 \)[/tex]:
[tex]\[ s(1) = -4.9(1)^2 + 19.6(1) + 58.8 = -4.9 + 19.6 + 58.8 = 73.5 \][/tex]
So, [tex]\( s(1) = 73.5 \)[/tex].

3. At [tex]\( t = 2 \)[/tex]:
[tex]\[ s(2) = -4.9(2)^2 + 19.6(2) + 58.8 = -19.6 + 39.2 + 58.8 = 78.4 \][/tex]
So, [tex]\( s(2) = 78.4 \)[/tex].

4. At [tex]\( t = 3 \)[/tex]:
[tex]\[ s(3) = -4.9(3)^2 + 19.6(3) + 58.8 = -44.1 + 58.8 + 58.8 = 73.5 \][/tex]
So, [tex]\( s(3) = 73.5 \)[/tex].

5. At [tex]\( t = 4 \)[/tex]:
[tex]\[ s(4) = -4.9(4)^2 + 19.6(4) + 58.8 = -78.4 + 78.4 + 58.8 = 58.8 \][/tex]
So, [tex]\( s(4) = 58.8 \)[/tex].

6. At [tex]\( t = 5 \)[/tex]:
[tex]\[ s(5) = -4.9(5)^2 + 19.6(5) + 58.8 = -122.5 + 98 + 58.8 \approx 34.3 \][/tex]
So, [tex]\( s(5) \approx 34.3 \)[/tex].

Based on these evaluations, the correct table of values is:

[tex]\[ \begin{tabular}{|c|c|} \hline $t$ & $s(t)$ \\ \hline 0 & 58.8 \\ \hline 1 & 73.5 \\ \hline 2 & 78.4 \\ \hline 3 & 73.5 \\ \hline 4 & 58.8 \\ \hline 5 & 34.3 \\ \hline \end{tabular} \][/tex]

Clearly, neither of the provided tables matches the correct values. Therefore, the correct table is not among the options given.