\begin{tabular}{|c|c|}
\hline
Measurement & \begin{tabular}{c}
Number of \\
Significant \\
Digits
\end{tabular} \\
\hline
0.008900 J & [tex]$\square$[/tex] \\
\hline
37100 kg & [tex]$\square$[/tex] \\
\hline
[tex]$4.7 \times 10^{-2}$[/tex] mL & [tex]$\square$[/tex] \\
\hline
[tex]$-3.0 \times 10^{-2}$[/tex] kJ/mol & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

Let's analyze each measurement step by step to determine the number of significant digits.

1. Measurement: 0.008900 J

To find the number of significant figures, we need to count all digits starting from the first non-zero digit:
- 0.008900
- The first non-zero digit is 8.
- Digits: 8, 9, 0, 0.

Therefore, 0.008900 J has 4 significant digits.

2. Measurement: 37100 kg

Here, we need to consider the rules for zeros in different positions:
- 37100
- Digits: 3, 7, 1, 0, 0.

Since trailing zeros in a whole number without a decimal point are not considered significant:
- 37100 has 3 significant digits (3, 7, 1).

3. Measurement: [tex]\(4.7 \times 10^{-2}\)[/tex] mL

Scientific notation makes it clearer:
- [tex]\(4.7 \times 10^{-2}\)[/tex]
- Digits: 4, 7.

Therefore, [tex]\(4.7 \times 10^{-2}\)[/tex] mL has 2 significant digits.

4. Measurement: [tex]\(-3.0 \times 10^{-2}\)[/tex] kJ/mol

Similarly, in scientific notation:
- [tex]\(-3.0 \times 10^{-2}\)[/tex]
- Digits: 3, 0.

Since the trailing zero after the decimal point is significant:
- [tex]\(-3.0 \times 10^{-2}\)[/tex] kJ/mol has 2 significant digits.

Summarizing all the results, we fill out the table:

[tex]\[ \begin{tabular}{|c|c|} \hline measurement & \begin{tabular}{c} number of \\ significant \\ digits \end{tabular} \\ \hline 0.008900 J & 4 \\ \hline 37100 kg & 3 \\ \hline $4.7 \times 10^{-2}$ mL & 2 \\ \hline $-3.0 \times 10^{-2}$ kJ/mol & 2 \\ \hline \end{tabular} \][/tex]