Answer :
To solve this problem, we need to follow a systematic approach. We'll start by analyzing the initial state, adding the changes, using the equilibrium expression, and then finding the new equilibrium concentrations.
### Step 1: Initial State at Equilibrium
Initially, we have:
- [tex]\( [A]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [B]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [C]_0 = 0.40 \)[/tex] mol/L
- [tex]\( [D]_0 = 0.40 \)[/tex] mol/L
### Step 2: Adding A and B
We add 0.15 mol of A and 0.15 mol of B to the system:
- New concentration of A: [tex]\( [A]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
- New concentration of B: [tex]\( [B]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
Therefore, the concentrations immediately after adding A and B are:
- [tex]\( [A]_i = 0.35 \)[/tex] mol/L
- [tex]\( [B]_i = 0.35 \)[/tex] mol/L
- [tex]\( [C]_i = 0.40 \)[/tex] mol/L
- [tex]\( [D]_i = 0.40 \)[/tex] mol/L
### Step 3: Equilibrium Constant Calculation
The equilibrium constant [tex]\( K \)[/tex] is calculated based on the initial equilibrium concentrations:
[tex]\[ K = \frac{[C]_0[D]_0}{[A]_0[B]_0} = \frac{(0.40 \, \text{mol/L}) (0.40 \, \text{mol/L})}{(0.20 \, \text{mol/L}) (0.20 \, \text{mol/L})} = \frac{0.16}{0.04} = 4 \][/tex]
### Step 4: Setting Up the ICE Table
Now, we use the ICE (Initial, Change, Equilibrium) table to find the changes that occur as the reaction re-establishes equilibrium:
```
A (g) + B (g) <=> C (g) + D (g)
Initial: 0.35 0.35 0.40 0.40
Change: -x -x +x +x
Equilibrium: 0.35-x 0.35-x 0.40+x 0.40+x
```
### Step 5: Applying the Equilibrium Expression
At equilibrium:
[tex]\[ K = \frac{[C][D]}{[A][B]} \][/tex]
[tex]\[ 4 = \frac{(0.40 + x)(0.40 + x)}{(0.35 - x)(0.35 - x)} \][/tex]
### Step 6: Solving the Equilibrium Expression
We need to solve the equation:
[tex]\[ 4 = \frac{(0.40 + x)^2}{(0.35 - x)^2} \][/tex]
Taking the square root of both sides:
[tex]\[ 2 = \frac{0.40 + x}{0.35 - x} \][/tex]
Now, solve for [tex]\( x \)[/tex]:
[tex]\[ 2(0.35 - x) = 0.40 + x \][/tex]
[tex]\[ 0.70 - 2x = 0.40 + x \][/tex]
[tex]\[ 0.70 - 0.40 = 3x \][/tex]
[tex]\[ 0.30 = 3x \][/tex]
[tex]\[ x = \frac{0.30}{3} = 0.10 \][/tex]
### Step 7: New Equilibrium Concentration of A
Using the value of [tex]\( x \)[/tex] to find the new equilibrium concentration of A:
[tex]\[ [A]_{eq} = 0.35 - x = 0.35 - 0.10 = 0.25 \, \text{mol/L} \][/tex]
### Conclusion
Thus, the new equilibrium concentration of [tex]\( A \)[/tex] is:
[tex]\( \boxed{0.25 \, \text{mol/L}} \)[/tex]
So, the correct answer is [tex]\( \text{d.} \)[/tex]
### Step 1: Initial State at Equilibrium
Initially, we have:
- [tex]\( [A]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [B]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [C]_0 = 0.40 \)[/tex] mol/L
- [tex]\( [D]_0 = 0.40 \)[/tex] mol/L
### Step 2: Adding A and B
We add 0.15 mol of A and 0.15 mol of B to the system:
- New concentration of A: [tex]\( [A]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
- New concentration of B: [tex]\( [B]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
Therefore, the concentrations immediately after adding A and B are:
- [tex]\( [A]_i = 0.35 \)[/tex] mol/L
- [tex]\( [B]_i = 0.35 \)[/tex] mol/L
- [tex]\( [C]_i = 0.40 \)[/tex] mol/L
- [tex]\( [D]_i = 0.40 \)[/tex] mol/L
### Step 3: Equilibrium Constant Calculation
The equilibrium constant [tex]\( K \)[/tex] is calculated based on the initial equilibrium concentrations:
[tex]\[ K = \frac{[C]_0[D]_0}{[A]_0[B]_0} = \frac{(0.40 \, \text{mol/L}) (0.40 \, \text{mol/L})}{(0.20 \, \text{mol/L}) (0.20 \, \text{mol/L})} = \frac{0.16}{0.04} = 4 \][/tex]
### Step 4: Setting Up the ICE Table
Now, we use the ICE (Initial, Change, Equilibrium) table to find the changes that occur as the reaction re-establishes equilibrium:
```
A (g) + B (g) <=> C (g) + D (g)
Initial: 0.35 0.35 0.40 0.40
Change: -x -x +x +x
Equilibrium: 0.35-x 0.35-x 0.40+x 0.40+x
```
### Step 5: Applying the Equilibrium Expression
At equilibrium:
[tex]\[ K = \frac{[C][D]}{[A][B]} \][/tex]
[tex]\[ 4 = \frac{(0.40 + x)(0.40 + x)}{(0.35 - x)(0.35 - x)} \][/tex]
### Step 6: Solving the Equilibrium Expression
We need to solve the equation:
[tex]\[ 4 = \frac{(0.40 + x)^2}{(0.35 - x)^2} \][/tex]
Taking the square root of both sides:
[tex]\[ 2 = \frac{0.40 + x}{0.35 - x} \][/tex]
Now, solve for [tex]\( x \)[/tex]:
[tex]\[ 2(0.35 - x) = 0.40 + x \][/tex]
[tex]\[ 0.70 - 2x = 0.40 + x \][/tex]
[tex]\[ 0.70 - 0.40 = 3x \][/tex]
[tex]\[ 0.30 = 3x \][/tex]
[tex]\[ x = \frac{0.30}{3} = 0.10 \][/tex]
### Step 7: New Equilibrium Concentration of A
Using the value of [tex]\( x \)[/tex] to find the new equilibrium concentration of A:
[tex]\[ [A]_{eq} = 0.35 - x = 0.35 - 0.10 = 0.25 \, \text{mol/L} \][/tex]
### Conclusion
Thus, the new equilibrium concentration of [tex]\( A \)[/tex] is:
[tex]\( \boxed{0.25 \, \text{mol/L}} \)[/tex]
So, the correct answer is [tex]\( \text{d.} \)[/tex]