Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]


Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
Moving to the next question prevents changes to this answer.
Question 2
A system at equilibrium in a 1.0-liter container was found to contain 0.20 mol of [tex]$A , 0.20 mol$[/tex] of [tex]$B , 0.40 mol$[/tex] of C , and 0.40 mol of D . If 0.15 mol of A and 0.15 mol of B are added to this system, what will be the new equilibrium concentration of A ?
[tex]$
A ( g )+ B ( g )\ \textless \ C ( g )+ D ( g )
$[/tex]
a. 0.050 M
b. 0.10 M
c. 0.20 M
d. 0.25 M
e. 0.30 M
-----

Response:

A system at equilibrium in a 1.0-liter container was found to contain 0.20 mol of [tex]\( A \)[/tex], 0.20 mol of [tex]\( B \)[/tex], 0.40 mol of [tex]\( C \)[/tex], and 0.40 mol of [tex]\( D \)[/tex]. If 0.15 mol of [tex]\( A \)[/tex] and 0.15 mol of [tex]\( B \)[/tex] are added to this system, what will be the new equilibrium concentration of [tex]\( A \)[/tex]?

[tex]\[ A(g) + B(g) \leftrightarrow C(g) + D(g) \][/tex]

a. 0.050 M
b. 0.10 M
c. 0.20 M
d. 0.25 M
e. 0.30 M



Answer :

To solve this problem, we need to follow a systematic approach. We'll start by analyzing the initial state, adding the changes, using the equilibrium expression, and then finding the new equilibrium concentrations.

### Step 1: Initial State at Equilibrium
Initially, we have:
- [tex]\( [A]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [B]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [C]_0 = 0.40 \)[/tex] mol/L
- [tex]\( [D]_0 = 0.40 \)[/tex] mol/L

### Step 2: Adding A and B
We add 0.15 mol of A and 0.15 mol of B to the system:
- New concentration of A: [tex]\( [A]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
- New concentration of B: [tex]\( [B]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L

Therefore, the concentrations immediately after adding A and B are:
- [tex]\( [A]_i = 0.35 \)[/tex] mol/L
- [tex]\( [B]_i = 0.35 \)[/tex] mol/L
- [tex]\( [C]_i = 0.40 \)[/tex] mol/L
- [tex]\( [D]_i = 0.40 \)[/tex] mol/L

### Step 3: Equilibrium Constant Calculation
The equilibrium constant [tex]\( K \)[/tex] is calculated based on the initial equilibrium concentrations:
[tex]\[ K = \frac{[C]_0[D]_0}{[A]_0[B]_0} = \frac{(0.40 \, \text{mol/L}) (0.40 \, \text{mol/L})}{(0.20 \, \text{mol/L}) (0.20 \, \text{mol/L})} = \frac{0.16}{0.04} = 4 \][/tex]

### Step 4: Setting Up the ICE Table
Now, we use the ICE (Initial, Change, Equilibrium) table to find the changes that occur as the reaction re-establishes equilibrium:
```
A (g) + B (g) <=> C (g) + D (g)
Initial: 0.35 0.35 0.40 0.40
Change: -x -x +x +x
Equilibrium: 0.35-x 0.35-x 0.40+x 0.40+x
```

### Step 5: Applying the Equilibrium Expression
At equilibrium:
[tex]\[ K = \frac{[C][D]}{[A][B]} \][/tex]
[tex]\[ 4 = \frac{(0.40 + x)(0.40 + x)}{(0.35 - x)(0.35 - x)} \][/tex]

### Step 6: Solving the Equilibrium Expression
We need to solve the equation:
[tex]\[ 4 = \frac{(0.40 + x)^2}{(0.35 - x)^2} \][/tex]
Taking the square root of both sides:
[tex]\[ 2 = \frac{0.40 + x}{0.35 - x} \][/tex]

Now, solve for [tex]\( x \)[/tex]:
[tex]\[ 2(0.35 - x) = 0.40 + x \][/tex]
[tex]\[ 0.70 - 2x = 0.40 + x \][/tex]
[tex]\[ 0.70 - 0.40 = 3x \][/tex]
[tex]\[ 0.30 = 3x \][/tex]
[tex]\[ x = \frac{0.30}{3} = 0.10 \][/tex]

### Step 7: New Equilibrium Concentration of A
Using the value of [tex]\( x \)[/tex] to find the new equilibrium concentration of A:
[tex]\[ [A]_{eq} = 0.35 - x = 0.35 - 0.10 = 0.25 \, \text{mol/L} \][/tex]

### Conclusion
Thus, the new equilibrium concentration of [tex]\( A \)[/tex] is:

[tex]\( \boxed{0.25 \, \text{mol/L}} \)[/tex]

So, the correct answer is [tex]\( \text{d.} \)[/tex]