The step function [tex]$g(x)$[/tex] is defined as shown.

[tex]\[ g(x) = \begin{cases}
-3, & x \leq 0 \\
2, & 0 \ \textless \ x \leq 4 \\
5, & 4 \ \textless \ x \leq 10
\end{cases} \][/tex]

What is the range of [tex]$g(x)$[/tex]?

A. [tex]$-3 \leq g(x) \leq 5$[/tex]

B. [tex][tex]$0 \leq g(x) \leq 10$[/tex][/tex]

C. [tex]$\{-3, 2, 5\}$[/tex]

D. [tex]$\{0, 4, 10\}$[/tex]



Answer :

To determine the range of the step function [tex]\( g(x) \)[/tex], we need to examine how [tex]\( g(x) \)[/tex] is defined for different intervals of [tex]\( x \)[/tex]. Let's analyze the function step by step.

The step function [tex]\( g(x) \)[/tex] is defined as follows:
[tex]\[ g(x)=\left\{\begin{array}{ll} -3 & \text{if } x \leq 0 \\ 2 & \text{if } 0 < x \leq 4 \\ 5 & \text{if } 4 < x \leq 10 \end{array}\right. \][/tex]

From this definition, we can see that:

1. When [tex]\( x \)[/tex] is less than or equal to 0, [tex]\( g(x) = -3 \)[/tex].
2. When [tex]\( x \)[/tex] is greater than 0 and less than or equal to 4, [tex]\( g(x) = 2 \)[/tex].
3. When [tex]\( x \)[/tex] is greater than 4 and less than or equal to 10, [tex]\( g(x) = 5 \)[/tex].

Given this information, [tex]\( g(x) \)[/tex] can take on the values [tex]\(-3\)[/tex], [tex]\(2\)[/tex], and [tex]\(5\)[/tex].

Thus, the range of the function [tex]\( g(x) \)[/tex] is the set of all possible output values, which are [tex]\(-3\)[/tex], [tex]\(2\)[/tex], and [tex]\(5\)[/tex].

Therefore, the correct option is:
[tex]\[ \{-3, 2, 5\} \][/tex]