A toy tractor sold for [tex]\$212[/tex] in 1980 and was sold again in 1990 for [tex]\$418[/tex]. Assume that the growth in the value [tex]V[/tex] of the collector's item was exponential.

a) Find the value [tex]k[/tex] of the exponential growth rate. Assume [tex]V_0 = 212[/tex].

[tex]\dot{k} = [/tex] (Round to the nearest thousandth.)



Answer :

To find the exponential growth rate [tex]\( k \)[/tex], we can use the formula for exponential growth:

[tex]\[ V(t) = V_0 \cdot e^{kt} \][/tex]

where:
- [tex]\( V(t) \)[/tex] is the value at time [tex]\( t \)[/tex],
- [tex]\( V_0 \)[/tex] is the initial value,
- [tex]\( k \)[/tex] is the growth rate,
- [tex]\( t \)[/tex] is the time.

Given:
- The initial value in 1980, [tex]\( V_0 = 212 \)[/tex] dollars,
- The value in 1990, [tex]\( V(t) = 418 \)[/tex] dollars,
- The time period [tex]\( t = 1990 - 1980 = 10 \)[/tex] years.

We need to find the value of [tex]\( k \)[/tex]. Start by substituting the known values into the exponential growth formula:

[tex]\[ 418 = 212 \cdot e^{k \cdot 10} \][/tex]

To isolate [tex]\( e^{k \cdot 10} \)[/tex], divide both sides by 212:

[tex]\[ \frac{418}{212} = e^{k \cdot 10} \][/tex]

Simplify the fraction:

[tex]\[ 1.9717 \approx e^{10k} \][/tex]

Next, take the natural logarithm (ln) of both sides to solve for [tex]\( k \)[/tex]:

[tex]\[ \ln(1.9717) = \ln(e^{10k}) \][/tex]

Using the property of logarithms that [tex]\( \ln(e^x) = x \)[/tex]:

[tex]\[ \ln(1.9717) = 10k \][/tex]

Solve for [tex]\( k \)[/tex] by dividing both sides by 10:

[tex]\[ k = \frac{\ln(1.9717)}{10} \][/tex]

Using the numerical value of [tex]\( \ln(1.9717) \approx 0.678 \)[/tex]:

[tex]\[ k \approx \frac{0.678}{10} \][/tex]

[tex]\[ k \approx 0.0678 \][/tex]

Rounding to the nearest thousandth:

[tex]\[ k \approx 0.068 \][/tex]

Thus, the exponential growth rate [tex]\( k \)[/tex] is approximately [tex]\( 0.068 \)[/tex] (rounded to the nearest thousandth).