Answered

Multiply the matrices:

[tex]\[
\left(\begin{array}{ll}
4 & 2 \\
3 & 6
\end{array}\right) \left(\begin{array}{ll}
8 & 1 \\
2 & 5
\end{array}\right)
\][/tex]

Solve for the resulting matrix.



Answer :

To multiply two matrices, we follow the rules of matrix multiplication. For two matrices [tex]\( A \)[/tex] and [tex]\( B \)[/tex], where [tex]\( A \)[/tex] is of size [tex]\( m \times n \)[/tex] and [tex]\( B \)[/tex] is of size [tex]\( n \times p \)[/tex], the resulting matrix [tex]\( C \)[/tex] will be of size [tex]\( m \times p \)[/tex]. Each element [tex]\( c_{ij} \)[/tex] in [tex]\( C \)[/tex] is obtained by taking the dot product of the [tex]\( i \)[/tex]-th row of [tex]\( A \)[/tex] with the [tex]\( j \)[/tex]-th column of [tex]\( B \)[/tex].

Given the matrices:
[tex]\[ A = \left(\begin{array}{cc} 4 & 2 \\ 3 & 6 \end{array}\right) \][/tex]
[tex]\[ B = \left(\begin{array}{cc} 8 & 1 \\ 2 & 5 \end{array}\right) \][/tex]

We will now find the resulting matrix [tex]\( C \)[/tex] by calculating each element step-by-step:

1. Calculate [tex]\( c_{11} \)[/tex]:
[tex]\[ c_{11} = 4 \cdot 8 + 2 \cdot 2 = 32 + 4 = 36 \][/tex]

2. Calculate [tex]\( c_{12} \)[/tex]:
[tex]\[ c_{12} = 4 \cdot 1 + 2 \cdot 5 = 4 + 10 = 14 \][/tex]

3. Calculate [tex]\( c_{21} \)[/tex]:
[tex]\[ c_{21} = 3 \cdot 8 + 6 \cdot 2 = 24 + 12 = 36 \][/tex]

4. Calculate [tex]\( c_{22} \)[/tex]:
[tex]\[ c_{22} = 3 \cdot 1 + 6 \cdot 5 = 3 + 30 = 33 \][/tex]

Putting these values together, the resulting matrix [tex]\( C \)[/tex] is:
[tex]\[ C = \left(\begin{array}{cc} 36 & 14 \\ 36 & 33 \end{array}\right) \][/tex]

Therefore, the product of the given matrices is:
[tex]\[ \left(\begin{array}{cc} 36 & 14 \\ 36 & 33 \end{array}\right) \][/tex]