Find the volume of a rectangular prism if the length is [tex]4x[/tex], the width is [tex]2x[/tex], and the height is [tex]x^3 + 3x + 6[/tex]. Use the formula [tex]V = l \cdot w \cdot h[/tex], where [tex]l[/tex] is length, [tex]w[/tex] is width, and [tex]h[/tex] is height, to find the volume.

A. [tex]6x^5 + 18x^3 + 36x^2[/tex]
B. [tex]6x^4 + 18x^2 + 36x^2[/tex]
C. [tex]8x^5 + 24x^3 + 48x^2[/tex]
D. [tex]8x^6 + 24x^3 + 48x^2[/tex]



Answer :

To find the volume of the rectangular prism, we will use the formula for volume, [tex]\( V \)[/tex], given by:

[tex]\[ V = l \cdot w \cdot h \][/tex]

where [tex]\( l \)[/tex] is the length, [tex]\( w \)[/tex] is the width, and [tex]\( h \)[/tex] is the height of the prism.

Given:
- [tex]\( l = 4x \)[/tex]
- [tex]\( w = 2x \)[/tex]
- [tex]\( h = x^3 + 3x + 6 \)[/tex]

Let's perform the multiplication step-by-step:

1. Multiply the length and the width:
[tex]\[ l \cdot w = (4x) \cdot (2x) = 8x^2 \][/tex]

2. Multiply the result with the height:
[tex]\[ V = (8x^2) \cdot (x^3 + 3x + 6) \][/tex]

3. Distribute [tex]\( 8x^2 \)[/tex] to each term in the height [tex]\( x^3 + 3x + 6 \)[/tex]:
[tex]\[ V = 8x^2 \cdot x^3 + 8x^2 \cdot 3x + 8x^2 \cdot 6 \][/tex]

4. Perform each multiplication:
[tex]\[ 8x^2 \cdot x^3 = 8x^{2+3} = 8x^5 \][/tex]
[tex]\[ 8x^2 \cdot 3x = 24x^{2+1} = 24x^3 \][/tex]
[tex]\[ 8x^2 \cdot 6 = 48x^2 \][/tex]

5. Combine all the terms to get the final volume:
[tex]\[ V = 8x^5 + 24x^3 + 48x^2 \][/tex]

So, the volume of the rectangular prism is [tex]\( 8x^5 + 24x^3 + 48x^2 \)[/tex].

Among the options given, the correct one is:

[tex]\[ 8x^5 + 24x^3 + 48x^2 \][/tex]