Select the correct answer.

Two points located on [tex]\overleftrightarrow{JK}[/tex] are [tex]\(U(1, -4)\)[/tex] and [tex]\(K(-2, 8)\)[/tex]. What is the slope of [tex]\overleftrightarrow{JK}[/tex]?

A. -4
B. -2
C. [tex]-\frac{1}{4}[/tex]
D. [tex]\frac{1}{4}[/tex]
E. 4



Answer :

To determine the slope of the line passing through the points [tex]\( U(1, -4) \)[/tex] and [tex]\( K(-2, 8) \)[/tex], we use the slope formula. The formula for the slope [tex]\( m \)[/tex] between any two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\( (x_1, y_1) = (1, -4) \)[/tex] and [tex]\( (x_2, y_2) = (-2, 8) \)[/tex].

Plugging these coordinates into the slope formula gives:

[tex]\[ m = \frac{8 - (-4)}{-2 - 1} \][/tex]

First, simplify the numerator and the denominator:

[tex]\[ m = \frac{8 + 4}{-2 - 1} \][/tex]

This simplifies to:

[tex]\[ m = \frac{12}{-3} \][/tex]

Finally, divide 12 by -3:

[tex]\[ m = -4 \][/tex]

Therefore, the slope of the line passing through the points [tex]\( U(1, -4) \)[/tex] and [tex]\( K(-2, 8) \)[/tex] is:

[tex]\[ \boxed{-4} \][/tex]