Answer :

Sure, let's analyze the point [tex]\( V \)[/tex] with coordinates [tex]\( (\sqrt{5}, -4) \)[/tex].

Given:

[tex]\[ V = (\sqrt{5}, -4) \][/tex]

We can express [tex]\(\sqrt{5}\)[/tex] numerically for better understanding. The square root of 5 is approximately [tex]\( 2.23606797749979 \)[/tex].

So, the coordinates of point [tex]\( V \)[/tex] can be expressed as:

[tex]\[ V \approx (2.23606797749979, -4) \][/tex]

This means that the x-coordinate of point [tex]\( V \)[/tex] is approximately [tex]\( 2.23606797749979 \)[/tex] and the y-coordinate is [tex]\( -4 \)[/tex].

In summary, the point [tex]\( V(\sqrt{5}, -4) \)[/tex] in decimal form is approximately:

[tex]\[ V \approx (2.23606797749979, -4) \][/tex]