Sure, let's analyze the point [tex]\( V \)[/tex] with coordinates [tex]\( (\sqrt{5}, -4) \)[/tex].
Given:
[tex]\[ V = (\sqrt{5}, -4) \][/tex]
We can express [tex]\(\sqrt{5}\)[/tex] numerically for better understanding. The square root of 5 is approximately [tex]\( 2.23606797749979 \)[/tex].
So, the coordinates of point [tex]\( V \)[/tex] can be expressed as:
[tex]\[ V \approx (2.23606797749979, -4) \][/tex]
This means that the x-coordinate of point [tex]\( V \)[/tex] is approximately [tex]\( 2.23606797749979 \)[/tex] and the y-coordinate is [tex]\( -4 \)[/tex].
In summary, the point [tex]\( V(\sqrt{5}, -4) \)[/tex] in decimal form is approximately:
[tex]\[ V \approx (2.23606797749979, -4) \][/tex]