UNIT 11.1 NUMBER & APPLICATION

1. Calculate
[tex]\[
2-4+3\left(\sqrt{9} \times 12-\left(2+2^3 \div 2\right)-1\right)
\][/tex]



Answer :

Let's break down and solve the expression step by step:

1. The expression given is:
[tex]\[ 2 - 4 + 3\left(\sqrt{9} \times 12 - \left(2 + 2^3 \div 2\right) - 1\right) \][/tex]

2. First part: Calculate [tex]\( 2 - 4 \)[/tex]:
[tex]\[ 2 - 4 = -2 \][/tex]

3. Second part: Solve the expression inside the parentheses:
[tex]\[ 3\left(\sqrt{9} \times 12 - \left(2 + 2^3 \div 2\right) - 1\right) \][/tex]

4. Calculate [tex]\( \sqrt{9} \)[/tex]:
[tex]\[ \sqrt{9} = 3 \][/tex]

5. Multiply by 12:
[tex]\[ 3 \times 12 = 36 \][/tex]

6. Evaluate the inner expression [tex]\( 2 + 2^3 \div 2 \)[/tex]:
[tex]\[ 2^3 = 8 \][/tex]
[tex]\[ 8 \div 2 = 4 \][/tex]
[tex]\[ 2 + 4 = 6 \][/tex]

7. Substitute the evaluated parts back into the main expression:
[tex]\[ 3\left(36 - 6 - 1\right) \][/tex]

8. Simplify [tex]\( 36 - 6 - 1 \)[/tex]:
[tex]\[ 36 - 6 = 30 \][/tex]
[tex]\[ 30 - 1 = 29 \][/tex]

9. Now multiply by 3:
[tex]\[ 3 \times 29 = 87 \][/tex]

10. Summing up the result from the two main parts:
[tex]\[ -2 + 87 = 85 \][/tex]

Therefore, the final result of the entire expression is:
[tex]\[ 85 \][/tex]