Answer :

To solve the equation [tex]\(\frac{\sqrt{7}-1}{\sqrt{7}+1} - \frac{\sqrt{7}+1}{\sqrt{7}-1} = a + b\sqrt{7}\)[/tex], we follow these steps:

1. Rationalize both fractions:

For the first fraction [tex]\(\frac{\sqrt{7}-1}{\sqrt{7}+1}\)[/tex]:
[tex]\[ \frac{\sqrt{7}-1}{\sqrt{7}+1} \times \frac{\sqrt{7}-1}{\sqrt{7}-1} = \frac{(\sqrt{7}-1)^2}{(\sqrt{7}+1)(\sqrt{7}-1)} \][/tex]
Simplify the numerator:
[tex]\[ (\sqrt{7}-1)^2 = 7 - 2\sqrt{7} + 1 = 8 - 2\sqrt{7} \][/tex]
Simplify the denominator:
[tex]\[ (\sqrt{7}+1)(\sqrt{7}-1) = 7 - 1 = 6 \][/tex]
So,
[tex]\[ \frac{\sqrt{7}-1}{\sqrt{7}+1} = \frac{8 - 2\sqrt{7}}{6} = \frac{4}{3} - \frac{\sqrt{7}}{3} \][/tex]

For the second fraction [tex]\(\frac{\sqrt{7}+1}{\sqrt{7}-1}\)[/tex]:
[tex]\[ \frac{\sqrt{7}+1}{\sqrt{7}-1} \times \frac{\sqrt{7}+1}{\sqrt{7}+1} = \frac{(\sqrt{7}+1)^2}{(\sqrt{7}-1)(\sqrt{7}+1)} \][/tex]
Simplify the numerator:
[tex]\[ (\sqrt{7}+1)^2 = 7 + 2\sqrt{7} + 1 = 8 + 2\sqrt{7} \][/tex]
Simplify the denominator:
[tex]\[ (\sqrt{7}-1)(\sqrt{7}+1) = 7 - 1 = 6 \][/tex]
So,
[tex]\[ \frac{\sqrt{7}+1}{\sqrt{7}-1} = \frac{8 + 2\sqrt{7}}{6} = \frac{4}{3} + \frac{\sqrt{7}}{3} \][/tex]

2. Subtract the two fractions:
[tex]\[ \left( \frac{4}{3} - \frac{\sqrt{7}}{3} \right) - \left( \frac{4}{3} + \frac{\sqrt{7}}{3} \right) \][/tex]

Combine them into one expression:
[tex]\[ \frac{4}{3} - \frac{\sqrt{7}}{3} - \frac{4}{3} - \frac{\sqrt{7}}{3} \][/tex]

Simplify the terms:
[tex]\[ \left( \frac{4}{3} - \frac{4}{3} \right) - \left( \frac{\sqrt{7}}{3} + \frac{\sqrt{7}}{3} \right) = 0 - \frac{2\sqrt{7}}{3} \][/tex]

3. Express in the form [tex]\(a + b\sqrt{7}\)[/tex]:
[tex]\[ 0 - \frac{2\sqrt{7}}{3} \][/tex]
Therefore,
[tex]\[ a = 0, \quad b = -\frac{2}{3} \][/tex]

So the values are [tex]\(a = 0\)[/tex] and [tex]\(b = -\frac{2}{3}\)[/tex].

For the additional value asked for [tex]\(a\)[/tex] and 15:
[tex]\[ a = 0 \text{ and substituting 15, } a + 15 = 0 + 15 = 15 \][/tex]

Thus, the values required are [tex]\(a = 0\)[/tex] and [tex]\(15\)[/tex].