2. What is the explicit formula for the geometric sequence: [tex]$224, 112, 56, 28, \ldots$[/tex]?

A. [tex]a(n) = 224 \left(\frac{1}{2}\right)^x[/tex]

B. [tex]a(n) = 224 + 112x[/tex]

C. [tex]a(n) = 224 (2)^x[/tex]

D. [tex]a(n) = 224 - 112x[/tex]



Answer :

Certainly! To find the explicit formula for the given geometric sequence: 224, 112, 56, 28, ..., we need to follow these steps:

1. Identify the first term (a₁): The first term of the sequence is given directly.
- So, [tex]\( a_1 = 224 \)[/tex].

2. Determine the common ratio (r): The common ratio can be found by dividing the second term by the first term.
- Common ratio [tex]\( r = \frac{112}{224} = \frac{1}{2} \)[/tex].

3. Formulate the explicit formula:
- The general explicit formula for a geometric sequence is given by:
[tex]\[ a(n) = a_1 \cdot r^{(n-1)} \][/tex]
- Here, [tex]\( a_1 = 224 \)[/tex] and [tex]\( r = \frac{1}{2} \)[/tex].

4. Substitute the values into the formula:
- Substitute [tex]\( a_1 \)[/tex] and [tex]\( r \)[/tex] into the general formula:
[tex]\[ a(n) = 224 \cdot \left(\frac{1}{2}\right)^{(n-1)} \][/tex]

Therefore, the explicit formula for the given geometric sequence is:

[tex]\[ a(n) = 224 \cdot \left(\frac{1}{2}\right)^{(n-1)} \][/tex]

Among the given options, this corresponds to:

[tex]\[ a(n) = 224 \left(\frac{1}{2}\right)^{x} \][/tex]

Here, [tex]\( x = n-1 \)[/tex].

Hence, the correct choice is:
[tex]\[ a(n) = 224 \left(\frac{1}{2}\right)^{x} \][/tex]