Answer :
Let's break down the solution to this problem step-by-step.
### Step 1: Identify the outcomes and their corresponding values of [tex]\( X \)[/tex]
The outcomes and the corresponding values of the random variable [tex]\( X \)[/tex] are given:
- eeo: [tex]\( X = -3 \)[/tex]
- eoo: [tex]\( X = -2 \)[/tex]
- eee: [tex]\( X = -6 \)[/tex]
- ooe: [tex]\( X = -2 \)[/tex]
- ooo: [tex]\( X = -3 \)[/tex]
- eoe: [tex]\( X = -3 \)[/tex]
- oeo: [tex]\( X = -2 \)[/tex]
- oee: [tex]\( X = -3 \)[/tex]
### Step 2: List the given values of [tex]\( X \)[/tex]
The given values of [tex]\( X \)[/tex] for each outcome are:
[tex]\[ [-3, -2, -6, -2, -3, -3, -2, -3] \][/tex]
### Step 3: Calculate the frequency of each value of [tex]\( X \)[/tex]
Next, we determine the frequency (how many times each unique value appears in the list):
- [tex]\( X = -6 \)[/tex] appears 1 time
- [tex]\( X = -3 \)[/tex] appears 4 times
- [tex]\( X = -2 \)[/tex] appears 3 times
### Step 4: Calculate the total number of outcomes
There are a total of 8 outcomes.
### Step 5: Calculate the probability distribution [tex]\( P(X=x) \)[/tex]
The probability of each value of [tex]\( X \)[/tex] is given by the frequency of that value divided by the total number of outcomes:
- [tex]\( P(X = -6) \)[/tex] : [tex]\(\frac{1}{8} = 0.125\)[/tex]
- [tex]\( P(X = -3) \)[/tex] : [tex]\(\frac{4}{8} = 0.5\)[/tex]
- [tex]\( P(X = -2) \)[/tex] : [tex]\(\frac{3}{8} = 0.375\)[/tex]
### Step 6: Organize the values and probabilities in a table
Now, filling in the given table format:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline Value \( x \) of \( X \) & -6 & -3 & -2 \\ \hline \( P(X = x) \) & 0.125 & 0.5 & 0.375 \\ \hline \end{tabular} \][/tex]
So, the completed table is:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline Value \( x \) of \( X \) & -6 & -3 & -2 \\ \hline \( P(X = x) \) & 0.125 & 0.5 & 0.375 \\ \hline \end{tabular} \][/tex]
This table shows the probability distribution for the random variable [tex]\( X \)[/tex].
### Step 1: Identify the outcomes and their corresponding values of [tex]\( X \)[/tex]
The outcomes and the corresponding values of the random variable [tex]\( X \)[/tex] are given:
- eeo: [tex]\( X = -3 \)[/tex]
- eoo: [tex]\( X = -2 \)[/tex]
- eee: [tex]\( X = -6 \)[/tex]
- ooe: [tex]\( X = -2 \)[/tex]
- ooo: [tex]\( X = -3 \)[/tex]
- eoe: [tex]\( X = -3 \)[/tex]
- oeo: [tex]\( X = -2 \)[/tex]
- oee: [tex]\( X = -3 \)[/tex]
### Step 2: List the given values of [tex]\( X \)[/tex]
The given values of [tex]\( X \)[/tex] for each outcome are:
[tex]\[ [-3, -2, -6, -2, -3, -3, -2, -3] \][/tex]
### Step 3: Calculate the frequency of each value of [tex]\( X \)[/tex]
Next, we determine the frequency (how many times each unique value appears in the list):
- [tex]\( X = -6 \)[/tex] appears 1 time
- [tex]\( X = -3 \)[/tex] appears 4 times
- [tex]\( X = -2 \)[/tex] appears 3 times
### Step 4: Calculate the total number of outcomes
There are a total of 8 outcomes.
### Step 5: Calculate the probability distribution [tex]\( P(X=x) \)[/tex]
The probability of each value of [tex]\( X \)[/tex] is given by the frequency of that value divided by the total number of outcomes:
- [tex]\( P(X = -6) \)[/tex] : [tex]\(\frac{1}{8} = 0.125\)[/tex]
- [tex]\( P(X = -3) \)[/tex] : [tex]\(\frac{4}{8} = 0.5\)[/tex]
- [tex]\( P(X = -2) \)[/tex] : [tex]\(\frac{3}{8} = 0.375\)[/tex]
### Step 6: Organize the values and probabilities in a table
Now, filling in the given table format:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline Value \( x \) of \( X \) & -6 & -3 & -2 \\ \hline \( P(X = x) \) & 0.125 & 0.5 & 0.375 \\ \hline \end{tabular} \][/tex]
So, the completed table is:
[tex]\[ \begin{tabular}{|l|c|c|c|} \hline Value \( x \) of \( X \) & -6 & -3 & -2 \\ \hline \( P(X = x) \) & 0.125 & 0.5 & 0.375 \\ \hline \end{tabular} \][/tex]
This table shows the probability distribution for the random variable [tex]\( X \)[/tex].