Add the following expressions:

[tex](5x^2 - 2x) + (6x - 4)[/tex]

A. [tex]5x^2 - 4x - 4[/tex]
B. [tex]5x^2 + 8x - 4[/tex]
C. [tex]3x^2 + 2x[/tex]
D. [tex]5x^2 + 4x - 4[/tex]



Answer :

To solve the problem of adding the polynomials [tex]\( (5x^2 - 2x) \)[/tex] and [tex]\( (6x - 4) \)[/tex], let's follow these steps:

1. Write down the given polynomials:

[tex]\[ (5x^2 - 2x) + (6x - 4) \][/tex]

2. Combine like terms:
- Identify the terms with [tex]\( x^2 \)[/tex], [tex]\( x \)[/tex], and the constant terms separately.
- There is only one term with [tex]\( x^2 \)[/tex], which is [tex]\( 5x^2 \)[/tex].
- For the [tex]\( x \)[/tex] terms: [tex]\(-2x\)[/tex] and [tex]\(+6x\)[/tex]
- For the constant term: [tex]\(-4\)[/tex]

3. Add the coefficients of like terms:
- The [tex]\( x^2 \)[/tex] term remains: [tex]\( 5x^2 \)[/tex].
- Combine the [tex]\( x \)[/tex] terms: [tex]\(-2x + 6x = 4x\)[/tex].
- The constant term is: [tex]\(-4\)[/tex].

4. Write the final polynomial expression:

Combining all the terms together, we get:

[tex]\[ 5x^2 + 4x - 4 \][/tex]

Therefore, the combined polynomial expression is:

[tex]\[ 5x^2 + 4x - 4 \][/tex]

So the correct answer is:

[tex]\[ \boxed{D. \ 5x^2 + 4x - 4} \][/tex]