Solve for [tex][tex]$y$[/tex][/tex].
Assume the equation has a solution for [tex]$y$[/tex].

[tex]
\begin{array}{l}
py + qy = -4y + 8 \\
y = \square
\end{array}
[/tex]



Answer :

To solve the equation for [tex]\( y \)[/tex] given by:

[tex]\[ p y + q y = -4 y + 8, \][/tex]

we can follow these steps:

1. Combine like terms on both sides of the equation.

On the left-hand side, combine [tex]\( p y \)[/tex] and [tex]\( q y \)[/tex]:

[tex]\[ (p + q) y = -4 y + 8. \][/tex]

2. Move all terms involving [tex]\( y \)[/tex] to one side of the equation. Add [tex]\( 4y \)[/tex] to both sides to accomplish this:

[tex]\[ (p + q) y + 4 y = 8. \][/tex]

3. Factor out [tex]\( y \)[/tex] on the left-hand side:

[tex]\[ (p + q + 4) y = 8. \][/tex]

4. Solve for [tex]\( y \)[/tex] by dividing both sides of the equation by [tex]\( (p + q + 4) \)[/tex]:

[tex]\[ y = \frac{8}{p + q + 4}. \][/tex]

Hence, the solution for [tex]\( y \)[/tex] is:

[tex]\[ y = \frac{8}{p + q + 4}. \][/tex]