For the function [tex]f(x) = \frac{3x - 18}{x + 6}[/tex], complete the following parts:

(a) Find [tex]f(x)[/tex] for [tex]x = -2[/tex] and [tex]x = p[/tex], if possible.
(b) Find the domain of [tex]f[/tex].



Answer :

Let's work through the problem step-by-step.

### Part (a)

First, let's find [tex]\( f(x) \)[/tex] for [tex]\( x = -2 \)[/tex] and [tex]\( x = p \)[/tex], if possible.

1. For [tex]\( x = -2 \)[/tex]:
Plugging [tex]\( x = -2 \)[/tex] into the function [tex]\( f(x) = \frac{3x - 18}{x + 6} \)[/tex],

[tex]\[ f(-2) = \frac{3(-2) - 18}{-2 + 6} = \frac{-6 - 18}{4} = \frac{-24}{4} = -6 \][/tex]

Therefore, [tex]\( f(-2) = -6 \)[/tex].

2. For [tex]\( x = p \)[/tex]:
Plugging [tex]\( x = p \)[/tex] into the function [tex]\( f(x) = \frac{3x - 18}{x + 6} \)[/tex],

[tex]\[ f(p) = \frac{3p - 18}{p + 6} \][/tex]

Hence, [tex]\( f(p) = \frac{3p - 18}{p + 6} \)[/tex].

### Part (b)

Next, let's find the domain of the function [tex]\( f \)[/tex].

The function [tex]\( f(x) = \frac{3x - 18}{x + 6} \)[/tex] will be defined for all real numbers except where the denominator is zero, as division by zero is undefined.

1. Set the denominator equal to zero and solve for [tex]\( x \)[/tex]:

[tex]\[ x + 6 = 0 \\ x = -6 \][/tex]

Thus, the function is undefined at [tex]\( x = -6 \)[/tex].

2. Therefore, the domain of the function [tex]\( f(x) \)[/tex] is all real numbers except [tex]\( x = -6 \)[/tex].

The domain can be written in interval notation as:

[tex]\[ (-\infty, -6) \cup (-6, \infty) \][/tex]

### Summary

- For [tex]\( x = -2 \)[/tex], [tex]\( f(x) = -6 \)[/tex].
- For [tex]\( x = p \)[/tex], [tex]\( f(x) = \frac{3p - 18}{p + 6} \)[/tex].
- The domain of [tex]\( f \)[/tex] is all real numbers except [tex]\( x = -6 \)[/tex], represented as [tex]\( (-\infty, -6) \cup (-6, \infty) \)[/tex]. The restriction that makes the function undefined is [tex]\( x = -6 \)[/tex].