Question 2 of 20

An airplane cabin is pressurized to [tex]$6.00 \times 10^2 \, \text{mmHg}$[/tex]. What is the pressure inside the cabin in atmospheres?

[tex]P = [/tex]



Answer :

To convert the cabin pressure from millimeters of mercury (mmHg) to atmospheres (atm), follow these steps:

1. Identify the Given Pressure: The cabin pressure is provided as [tex]\(6.00 \times 10^2 \, \text{mmHg}\)[/tex].

2. Understand the Conversion Factor: We know that [tex]\(1 \, \text{atm} = 760 \, \text{mmHg}\)[/tex]. Therefore, to convert from mmHg to atm, we use the conversion factor where [tex]\(1 \, \text{mmHg} = \frac{1}{760} \, \text{atm}\)[/tex].

3. Set Up the Conversion Calculation:

[tex]\[ P(\text{atm}) = P(\text{mmHg}) \times \left( \frac{1 \, \text{atm}}{760 \, \text{mmHg}} \right) \][/tex]

4. Apply the Given Values:

[tex]\[ P(\text{atm}) = 6.00 \times 10^2 \, \text{mmHg} \times \left( \frac{1 \, \text{atm}}{760 \, \text{mmHg}} \right) \][/tex]

5. Calculate the Pressure in Atmospheres:

[tex]\[ P(\text{atm}) = 600 \, \text{mmHg} \times \frac{1}{760} \, \text{atm} \][/tex]

By performing the division:

[tex]\[ P(\text{atm}) \approx 0.7894736842105263 \, \text{atm} \][/tex]

So, the pressure inside the cabin in atmospheres is approximately [tex]\(0.789 \, \text{atm}\)[/tex] (Typically rounded to three significant figures, this would be [tex]\(0.789 \, \text{atm}\)[/tex]).

Therefore, the pressure inside the cabin is:
[tex]\[ P = 0.789 \, \text{atm} \][/tex]

Other Questions