What is the product of [tex]2p + q[/tex] and [tex]-3q - 6p + 1[/tex]?

A. [tex]-12p^2 - 6pq - 4p - 3q + 1[/tex]
B. [tex]-12p^2 - 12pq + 2p - 3q^2 + q[/tex]
C. [tex]-9p^2q^2 + 12pq - 2p + q[/tex]
D. [tex]12p^2 + 12pq + 2p + 3q^2 + q[/tex]



Answer :

To find the product of the expressions [tex]\(2p + q\)[/tex] and [tex]\(-3q - 6p + 1\)[/tex], follow these steps:

1. Write out the given expressions:
[tex]\[ (2p + q)(-3q - 6p + 1) \][/tex]

2. Distribute each term in the first expression to each term in the second expression:
[tex]\[ (2p)(-3q) + (2p)(-6p) + (2p)(1) + (q)(-3q) + (q)(-6p) + (q)(1) \][/tex]

Evaluate each term:
- [tex]\( (2p)(-3q) = -6pq \)[/tex]
- [tex]\( (2p)(-6p) = -12p^2 \)[/tex]
- [tex]\( (2p)(1) = 2p \)[/tex]
- [tex]\( (q)(-3q) = -3q^2 \)[/tex]
- [tex]\( (q)(-6p) = -6pq \)[/tex]
- [tex]\( (q)(1) = q \)[/tex]

3. Combine all the terms together:
[tex]\[ -6pq - 12p^2 + 2p - 3q^2 - 6pq + q \][/tex]

4. Combine like terms:
- Combine the [tex]\(pq\)[/tex] terms: [tex]\(-6pq - 6pq = -12pq\)[/tex]
- The final expression after combining like terms is:
[tex]\[ -12p^2 - 12pq + 2p - 3q^2 + q \][/tex]

5. Compare with the given options:

The product we obtained is:
[tex]\[ -12p^2 - 12pq + 2p - 3q^2 + q \][/tex]

Match this with the given options:

- Option [tex]\(\mathbf{1}: -12p^2 - 6pq - 4p - 3q + 1\)[/tex]
- Option [tex]\(\mathbf{2}: -12p^2 - 12pq + 2p - 3q^2 + q\)[/tex]
- Option [tex]\(\mathbf{3}: -9p^2q^2 + 12pq - 2p + q\)[/tex]
- Option [tex]\(\mathbf{4}: 12p^2 + 12pq + 2p + 3q^2 + q\)[/tex]

The correct match is:
[tex]\[ \textbf{Option 2: } -12p^2 - 12pq + 2p - 3q^2 + q \][/tex]

Therefore, the product of [tex]\(2p + q\)[/tex] and [tex]\(-3q - 6p + 1\)[/tex] is:
[tex]\[ -12p^2 - 12pq + 2p - 3q^2 + q \][/tex]

So, the correct option is [tex]\(\boxed{2}\)[/tex].