Answer :
Let's break down each part of the problem and solve it step-by-step.
### Part (a) Find an equation [tex]\( v(t) \)[/tex] for the object velocity.
We are given the acceleration [tex]\( a(t) = 7 \sin(t) \)[/tex]. The acceleration is the derivative of velocity, i.e., [tex]\( v'(t) = a(t) \)[/tex].
To find the velocity [tex]\( v(t) \)[/tex], we need to integrate the acceleration function.
[tex]\[ v(t) = \int 7 \sin(t) \, dt \][/tex]
The integral of [tex]\( 7 \sin(t) \)[/tex] is:
[tex]\[ v(t) = -7 \cos(t) + C \][/tex]
To determine the constant [tex]\( C \)[/tex], we use the initial condition [tex]\( v(0) = -13 \)[/tex]:
[tex]\[ v(0) = -7 \cos(0) + C = -13 \][/tex]
Since [tex]\( \cos(0) = 1 \)[/tex], we can solve for [tex]\( C \)[/tex]:
[tex]\[ -7 \cdot 1 + C = -13 \][/tex]
[tex]\[ -7 + C = -13 \][/tex]
[tex]\[ C = -6 \][/tex]
Thus, the velocity function is:
[tex]\[ v(t) = -7 \cos(t) - 6 \][/tex]
### Part (b) Find the object's displacement from time 0 to time 3.
Displacement is the integral of velocity over the given time interval [0, 3].
[tex]\[ \text{Displacement} = \int_{0}^{3} v(t) \, dt \][/tex]
Using the velocity function [tex]\( v(t) = -7 \cos(t) - 6 \)[/tex]:
[tex]\[ \text{Displacement} = \int_{0}^{3} (-7 \cos(t) - 6) \, dt \][/tex]
After performing this integration, we obtain:
[tex]\[ \text{Displacement} = -18.9878 \, \text{meters} \][/tex]
### Part (c) Find the total distance traveled by the object from time 0 to time 3.
The total distance traveled is the integral of the absolute value of the velocity function over the given time interval [0, 3].
[tex]\[ \text{Total Distance} = \int_{0}^{3} |v(t)| \, dt \][/tex]
Using the velocity function [tex]\( v(t) = -7 \cos(t) - 6 \)[/tex], we compute:
[tex]\[ \text{Total Distance} = \int_{0}^{3} | -7 \cos(t) - 6 | \, dt \][/tex]
After performing this integration, we obtain:
[tex]\[ \text{Total Distance} = 19.4292 \, \text{meters} \][/tex]
### Summary of Results
(b) The object's displacement from time 0 to time 3 is:
[tex]\[ -18.9878 \, \text{meters} \][/tex]
(c) The total distance traveled by the object from time 0 to time 3 is:
[tex]\[ 19.4292 \, \text{meters} \][/tex]
### Part (a) Find an equation [tex]\( v(t) \)[/tex] for the object velocity.
We are given the acceleration [tex]\( a(t) = 7 \sin(t) \)[/tex]. The acceleration is the derivative of velocity, i.e., [tex]\( v'(t) = a(t) \)[/tex].
To find the velocity [tex]\( v(t) \)[/tex], we need to integrate the acceleration function.
[tex]\[ v(t) = \int 7 \sin(t) \, dt \][/tex]
The integral of [tex]\( 7 \sin(t) \)[/tex] is:
[tex]\[ v(t) = -7 \cos(t) + C \][/tex]
To determine the constant [tex]\( C \)[/tex], we use the initial condition [tex]\( v(0) = -13 \)[/tex]:
[tex]\[ v(0) = -7 \cos(0) + C = -13 \][/tex]
Since [tex]\( \cos(0) = 1 \)[/tex], we can solve for [tex]\( C \)[/tex]:
[tex]\[ -7 \cdot 1 + C = -13 \][/tex]
[tex]\[ -7 + C = -13 \][/tex]
[tex]\[ C = -6 \][/tex]
Thus, the velocity function is:
[tex]\[ v(t) = -7 \cos(t) - 6 \][/tex]
### Part (b) Find the object's displacement from time 0 to time 3.
Displacement is the integral of velocity over the given time interval [0, 3].
[tex]\[ \text{Displacement} = \int_{0}^{3} v(t) \, dt \][/tex]
Using the velocity function [tex]\( v(t) = -7 \cos(t) - 6 \)[/tex]:
[tex]\[ \text{Displacement} = \int_{0}^{3} (-7 \cos(t) - 6) \, dt \][/tex]
After performing this integration, we obtain:
[tex]\[ \text{Displacement} = -18.9878 \, \text{meters} \][/tex]
### Part (c) Find the total distance traveled by the object from time 0 to time 3.
The total distance traveled is the integral of the absolute value of the velocity function over the given time interval [0, 3].
[tex]\[ \text{Total Distance} = \int_{0}^{3} |v(t)| \, dt \][/tex]
Using the velocity function [tex]\( v(t) = -7 \cos(t) - 6 \)[/tex], we compute:
[tex]\[ \text{Total Distance} = \int_{0}^{3} | -7 \cos(t) - 6 | \, dt \][/tex]
After performing this integration, we obtain:
[tex]\[ \text{Total Distance} = 19.4292 \, \text{meters} \][/tex]
### Summary of Results
(b) The object's displacement from time 0 to time 3 is:
[tex]\[ -18.9878 \, \text{meters} \][/tex]
(c) The total distance traveled by the object from time 0 to time 3 is:
[tex]\[ 19.4292 \, \text{meters} \][/tex]