Select the correct answer.

Find the approximate solution of this system of equations.
[tex]
\begin{array}{l}
y = x^2 + 5x + 3 \\
y = \sqrt{2x + 5}
\end{array}
[/tex]

A. [tex]$(2.1, 0.2)$[/tex]
B. [tex]$(-0.2, 2.1)$[/tex]
C. [tex]$(-2.1, 0.2)$[/tex]
D. [tex]$(0.2, 2.1)$[/tex]



Answer :

To solve the given system of equations:
[tex]\[ \begin{array}{l} y = x^2 + 5x + 3 \\ y = \sqrt{2x + 5} \end{array} \][/tex]
we need to find the approximate values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations.

Let's break down the solution step-by-step:

1. Set Up the Equations:
The equations given in the problem are:
[tex]\[ y = x^2 + 5x + 3 \quad \text{(Equation 1)} \][/tex]
[tex]\[ y = \sqrt{2x + 5} \quad \text{(Equation 2)} \][/tex]

2. System of Equations:
We seek the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that simultaneously satisfy both equations.

3. Solve the Equations:
Through iterative methods or numerical root-finding techniques, an approximate solution is determined.

4. Approximate Solution:
Upon finding the intersection point, the values obtained are:
[tex]\[ x \approx -0.17481825533866552 \][/tex]
[tex]\[ y \approx 2.1564701457063276 \][/tex]

5. Compare with Given Options:
The possible choices are:
- A. [tex]\((2.1, 0.2)\)[/tex]
- B. [tex]\((-0.2, 2.1)\)[/tex]
- C. [tex]\((-2.1, 0.2)\)[/tex]
- D. [tex]\((0.2, 2.1)\)[/tex]

6. Determine the Closest Option:
We need to identify which of the given options is closest to the computed solution [tex]\((x, y) \approx (-0.1748, 2.1565)\)[/tex]. Option B [tex]\((-0.2, 2.1)\)[/tex] is the closest because:
- The [tex]\(x\)[/tex]-value [tex]\(-0.2\)[/tex] is very close to [tex]\(-0.1748\)[/tex].
- The [tex]\(y\)[/tex]-value [tex]\(2.1\)[/tex] is very close to [tex]\(2.1565\)[/tex].

Therefore, the solution that is closest to the computed intersection point is:

B. [tex]\((-0.2, 2.1)\)[/tex]