Solve each inequality. Round to the nearest hundredth.

[tex]\[ 3x^2 - 4 \leq 6 - 5x \][/tex]

A. [tex]\(-2.84 \leq x \leq 1.17\)[/tex]
B. No solution
C. Infinite solutions
D. [tex]\(x \leq -2.84\)[/tex] or [tex]\(x \geq 1.17\)[/tex]



Answer :

To solve the inequality [tex]\(3x^2 - 4 \leq 6 - 5x\)[/tex], we follow these steps:

1. Rewrite the inequality:

First, we move all terms to one side of the inequality:
[tex]\[ 3x^2 - 4 \leq 6 - 5x \][/tex]
becomes
[tex]\[ 3x^2 - 4 - 6 + 5x \leq 0 \][/tex]
Simplifying,
[tex]\[ 3x^2 + 5x - 10 \leq 0 \][/tex]

2. Solve the equality [tex]\(3x^2 + 5x - 10 = 0\)[/tex]:

We use the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex], where [tex]\(a = 3\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -10\)[/tex].

Calculate the discriminant:
[tex]\[ \Delta = b^2 - 4ac = 5^2 - 4(3)(-10) = 25 + 120 = 145 \][/tex]

The roots are:
[tex]\[ x = \frac{-5 \pm \sqrt{145}}{2 \times 3} \][/tex]
[tex]\[ x = \frac{-5 \pm \sqrt{145}}{6} \][/tex]

Compute the approximate decimal values:
[tex]\[ x_1 = \frac{-5 + \sqrt{145}}{6} \approx \frac{-5 + 12.04}{6} \approx \frac{7.04}{6} \approx 1.17 \][/tex]
[tex]\[ x_2 = \frac{-5 - \sqrt{145}}{6} \approx \frac{-5 - 12.04}{6} \approx \frac{-17.04}{6} \approx -2.84 \][/tex]

3. Determine the intervals for the inequality:

The roots split the number line into three intervals: [tex]\((-\infty, -2.84)\)[/tex], [tex]\((-2.84, 1.17)\)[/tex], and [tex]\((1.17, \infty)\)[/tex].

We test points in each interval to see where the inequality [tex]\(3x^2 + 5x - 10 \leq 0\)[/tex] holds.

- For [tex]\(x\)[/tex] within [tex]\((-2.84, 1.17)\)[/tex]:
The quadratic [tex]\(3x^2 + 5x - 10 = 0\)[/tex] changes signs at the roots, meaning it is negative or zero within the interior interval between the roots.

4. Concluding the solution:

Thus, the inequality [tex]\(3x^2 + 5x - 10 \leq 0\)[/tex] holds for:
[tex]\[ -2.84 \leq x \leq 1.17 \][/tex]

So the correct answers are:

[tex]\[ -2.84 \leq x \leq 1.17 \][/tex]

This is the interval within which the quadratic expression [tex]\(3x^2 + 5x - 10\)[/tex] is less than or equal to zero.