Answer :
To complete the table, we need to fill in the missing y-values corresponding to the given x-values.
The given data in the table is:
[tex]\[ \left|\begin{array}{cc|c|c|c|c} x & -3 & -2 & -1 \\ y & -1 & -1 & \\ \end{array}\right| \][/tex]
The completed table should have the y-values for all provided x-values. Given that for [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex], the [tex]\( y \)[/tex]-values are both [tex]\(-1\)[/tex], we'll use this pattern to infer that for the remaining [tex]\( x = -1 \)[/tex], the corresponding [tex]\( y \)[/tex]-value should also be [tex]\(-1\)[/tex].
So we can complete the table as follows:
[tex]\[ \left|\begin{array}{cc|c|c|c|c} x & -3 & -2 & -1 \\ y & -1 & -1 & -1 \\ \end{array}\right| \][/tex]
Thus, the completed table is:
[tex]\[ \begin{array}{c|c|c|c} x & -3 & -2 & -1 \\ \hline y & -1 & -1 & -1 \\ \end{array} \][/tex]
The given data in the table is:
[tex]\[ \left|\begin{array}{cc|c|c|c|c} x & -3 & -2 & -1 \\ y & -1 & -1 & \\ \end{array}\right| \][/tex]
The completed table should have the y-values for all provided x-values. Given that for [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex], the [tex]\( y \)[/tex]-values are both [tex]\(-1\)[/tex], we'll use this pattern to infer that for the remaining [tex]\( x = -1 \)[/tex], the corresponding [tex]\( y \)[/tex]-value should also be [tex]\(-1\)[/tex].
So we can complete the table as follows:
[tex]\[ \left|\begin{array}{cc|c|c|c|c} x & -3 & -2 & -1 \\ y & -1 & -1 & -1 \\ \end{array}\right| \][/tex]
Thus, the completed table is:
[tex]\[ \begin{array}{c|c|c|c} x & -3 & -2 & -1 \\ \hline y & -1 & -1 & -1 \\ \end{array} \][/tex]