Question 9 of 10

Which point is a solution to [tex]y \geq 2x - 1[/tex]?

A. [tex](4, 2)[/tex]

B. [tex](0, -10)[/tex]

C. [tex](0, 2)[/tex]

D. [tex](4, 1)[/tex]



Answer :

To determine which point is a solution to the inequality [tex]\( y \geq 2x - 1 \)[/tex], we need to substitute each point into the inequality and see if the inequality holds true.

Let's check each option step-by-step:

### Option A: [tex]\((4, 2)\)[/tex]

1. Calculate [tex]\( 2x - 1 \)[/tex]:
[tex]\[ 2 \times 4 - 1 = 8 - 1 = 7 \][/tex]
2. Compare [tex]\( y \)[/tex] with [tex]\( 2x - 1 \)[/tex]:
[tex]\[ 2 \geq 7 \quad (\text{False}) \][/tex]
Point [tex]\((4, 2)\)[/tex] does not satisfy the inequality.

### Option B: [tex]\((0, -10)\)[/tex]

1. Calculate [tex]\( 2x - 1 \)[/tex]:
[tex]\[ 2 \times 0 - 1 = 0 - 1 = -1 \][/tex]
2. Compare [tex]\( y \)[/tex] with [tex]\( 2x - 1 \)[/tex]:
[tex]\[ -10 \geq -1 \quad (\text{False}) \][/tex]
Point [tex]\((0, -10)\)[/tex] does not satisfy the inequality.

### Option C: [tex]\((0, 2)\)[/tex]

1. Calculate [tex]\( 2x - 1 \)[/tex]:
[tex]\[ 2 \times 0 - 1 = 0 - 1 = -1 \][/tex]
2. Compare [tex]\( y \)[/tex] with [tex]\( 2x - 1 \)[/tex]:
[tex]\[ 2 \geq -1 \quad (\text{True}) \][/tex]
Point [tex]\((0, 2)\)[/tex] does satisfy the inequality.

### Option D: [tex]\((4, 1)\)[/tex]

1. Calculate [tex]\( 2x - 1 \)[/tex]:
[tex]\[ 2 \times 4 - 1 = 8 - 1 = 7 \][/tex]
2. Compare [tex]\( y \)[/tex] with [tex]\( 2x - 1 \)[/tex]:
[tex]\[ 1 \geq 7 \quad (\text{False}) \][/tex]
Point [tex]\((4, 1)\)[/tex] does not satisfy the inequality.

### Conclusion
Only point [tex]\( \boxed{C} \, (0, 2) \)[/tex] is a solution to the inequality [tex]\( y \geq 2x - 1 \)[/tex].