Solve for [tex]\( x \)[/tex]:

[tex]\[ 3x = 6x - 2 \][/tex]


Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
h. [tex]$x^2+2 y-y^2-2 x=0$[/tex]
-----

Response:

Solve the equation:

[tex]\[ x^2 + 2y - y^2 - 2x = 0 \][/tex]



Answer :

Alright, let's solve the given equation step-by-step:

We start with the equation:

[tex]\[ x^2 + 2y - y^2 - 2x = 0 \][/tex]

We want to solve this equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex].

1. Transpose Terms: Rearrange the equation to separate the terms involving [tex]\( y \)[/tex]:

[tex]\[ x^2 - 2x + 2y - y^2 = 0 \][/tex]

We can rewrite it as:

[tex]\[ -y^2 + 2y + x^2 - 2x = 0 \][/tex]

2. Convert to Standard Quadratic Form: Recognize that this is a quadratic equation in terms of [tex]\( y \)[/tex]. Rewrite it in standard quadratic form [tex]\( ay^2 + by + c = 0 \)[/tex] where [tex]\( a = -1 \)[/tex], [tex]\( b = 2 \)[/tex], and [tex]\( c = x^2 - 2x \)[/tex]:

[tex]\[ -y^2 + 2y + (x^2 - 2x) = 0 \][/tex]

3. Solve the Quadratic Equation: To solve for [tex]\( y \)[/tex], we use the quadratic formula, [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:

Plug in the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

[tex]\[ y = \frac{-2 \pm \sqrt{(2)^2 - 4(-1)(x^2 - 2x)}}{2(-1)} \][/tex]

Simplify within the square root:

[tex]\[ y = \frac{-2 \pm \sqrt{4 + 4(x^2 - 2x)}}{-2} \][/tex]

[tex]\[ y = \frac{-2 \pm \sqrt{4 + 4x^2 - 8x}}{-2} \][/tex]

[tex]\[ y = \frac{-2 \pm \sqrt{4(x^2 - 2x + 1)}}{-2} \][/tex]

[tex]\[ y = \frac{-2 \pm \sqrt{4(x - 1)^2}}{-2} \][/tex]

[tex]\[ y = \frac{-2 \pm 2(x - 1)}{-2} \][/tex]

4. Simplify the Expressions: Solve for the two possible values of [tex]\( y \)[/tex]:

[tex]\[ y = \frac{-2 + 2(x - 1)}{-2} \quad \text{and} \quad y = \frac{-2 - 2(x - 1)}{-2} \][/tex]

Simplify each case:

[tex]\[ y = \frac{-2 + 2x - 2}{-2} = \frac{2(1 - x)}{-2} = x \][/tex]

[tex]\[ y = \frac{-2 - 2x + 2}{-2} = \frac{2(x - 1)}{-2} = 2 - x \][/tex]

Thus, the solutions for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] are:

[tex]\[ y = x \][/tex]
[tex]\[ y = 2 - x \][/tex]

These are the two solutions to the equation [tex]\( x^2 + 2y - y^2 - 2x = 0 \)[/tex].