What is the net present value of a project with the following cash flows if the discount rate is 12 percent?

[tex]\[
\begin{tabular}{|cr|}
\hline
Year & Cash Flow \\
\hline
0 & -\$27,500 \\
1 & \$14,800 \\
2 & \$19,400 \\
3 & \$5,200 \\
\hline
\end{tabular}
\][/tex]

Multiple Choice:



Answer :

To determine the net present value (NPV) of a project with given cash flows and a specified discount rate, follow these steps:

1. Identify the cash flows by year:
[tex]\[ \begin{aligned} & \text{Year 0: } -27,500 \\ & \text{Year 1: } 14,800 \\ & \text{Year 2: } 19,400 \\ & \text{Year 3: } 5,200 \\ \end{aligned} \][/tex]

2. Determine the discount rate:
[tex]\[ r = 12\% \text{ or } 0.12 \][/tex]

3. Calculate the present value (PV) of each cash flow:
[tex]\[ \text{PV of a cash flow in year t} = \frac{\text{Cash Flow}_t}{(1 + r)^t} \][/tex]

4. Compute the present value for each year:

- Year 0 (Initial Investment, t = 0):
[tex]\[ \text{PV}_0 = \frac{-27,500}{(1 + 0.12)^0} = -27,500 \][/tex]
The PV for year 0 remains [tex]\(-27,500\)[/tex] because any number to the power of zero is 1.

- Year 1 (t = 1):
[tex]\[ \text{PV}_1 = \frac{14,800}{(1 + 0.12)^1} = \frac{14,800}{1.12} \approx 13,214.29 \][/tex]

- Year 2 (t = 2):
[tex]\[ \text{PV}_2 = \frac{19,400}{(1 + 0.12)^2} = \frac{19,400}{1.2544} \approx 15,465.56 \][/tex]

- Year 3 (t = 3):
[tex]\[ \text{PV}_3 = \frac{5,200}{(1 + 0.12)^3} = \frac{5,200}{1.404928} \approx 3,701.26 \][/tex]

5. Sum the present values to compute the NPV:
[tex]\[ \begin{aligned} \text{NPV} &= \text{PV}_0 + \text{PV}_1 + \text{PV}_2 + \text{PV}_3 \\ &= -27,500 + 13,214.29 + 15,465.56 + 3,701.26 \\ &= 4,881.10 \end{aligned} \][/tex]

6. Interpret the NPV result:

Thus, the net present value (NPV) of the project, given the cash flows [tex]\( -27,500 \)[/tex], [tex]\( 14,800 \)[/tex], [tex]\( 19,400 \)[/tex], and [tex]\( 5,200 \)[/tex] at a discount rate of 12%, is approximately \$4,881.10. This positive NPV suggests that the project is expected to add value and therefore may be considered a profitable investment.