Answer :
Sure, let's break it down step-by-step to solve the given expression:
We start with the expression:
[tex]\[ \frac{\frac{-4}{125}}{\frac{-6}{-36}} \][/tex]
First, let's simplify the numerator and the denominator separately.
Numerator:
[tex]\[ \frac{-4}{125} \approx -0.032 \][/tex]
Denominator:
[tex]\[ \frac{-6}{-36} \][/tex]
Since both the numerator and the denominator are negative, their signs cancel out:
[tex]\[ \frac{6}{36} = \frac{1}{6} \approx 0.16666666666666666 \][/tex]
So now, our expression looks like this:
[tex]\[ \frac{-0.032}{0.16666666666666666} \][/tex]
Next, we divide the simplified numerator by the simplified denominator:
[tex]\[ \frac{-0.032}{0.16666666666666666} \approx -0.192 \][/tex]
So, the final result is:
[tex]\[ \frac{\frac{-4}{125}}{\frac{-6}{-36}} = -0.192 \][/tex]
By breaking it down step-by-step, we've solved the expression to get the final result of approximately [tex]\(-0.192\)[/tex].
We start with the expression:
[tex]\[ \frac{\frac{-4}{125}}{\frac{-6}{-36}} \][/tex]
First, let's simplify the numerator and the denominator separately.
Numerator:
[tex]\[ \frac{-4}{125} \approx -0.032 \][/tex]
Denominator:
[tex]\[ \frac{-6}{-36} \][/tex]
Since both the numerator and the denominator are negative, their signs cancel out:
[tex]\[ \frac{6}{36} = \frac{1}{6} \approx 0.16666666666666666 \][/tex]
So now, our expression looks like this:
[tex]\[ \frac{-0.032}{0.16666666666666666} \][/tex]
Next, we divide the simplified numerator by the simplified denominator:
[tex]\[ \frac{-0.032}{0.16666666666666666} \approx -0.192 \][/tex]
So, the final result is:
[tex]\[ \frac{\frac{-4}{125}}{\frac{-6}{-36}} = -0.192 \][/tex]
By breaking it down step-by-step, we've solved the expression to get the final result of approximately [tex]\(-0.192\)[/tex].