The one-to-one function [tex]g[/tex] is defined below:
[tex]
g(x)=\frac{7x-1}{5x+4}
[/tex]

Find [tex]g^{-1}(x)[/tex], where [tex]g^{-1}[/tex] is the inverse of [tex]g[/tex]. Also, state the domain and range of [tex]g^{-1}[/tex] in interval notation.

[tex]
g^{-1}(x)= \square
[/tex]

Domain of [tex]g^{-1}[/tex]: [tex]\square[/tex]

Range of [tex]g^{-1}[/tex]: [tex]\square[/tex]



Answer :

To find the inverse of the function [tex]\( g(x) = \frac{7x - 1}{5x + 4} \)[/tex], we follow these steps:

1. Set up the equation for the inverse function:

We start by writing [tex]\( g(x) = y \)[/tex], but we swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] since we want to solve for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:

[tex]\[ x = \frac{7y - 1}{5y + 4} \][/tex]

2. Solve for [tex]\( y \)[/tex]:

Isolate [tex]\( y \)[/tex] by cross-multiplying to get rid of the fraction:

[tex]\[ x(5y + 4) = 7y - 1 \][/tex]

Distribute [tex]\( x \)[/tex]:

[tex]\[ 5xy + 4x = 7y - 1 \][/tex]

Move all terms involving [tex]\( y \)[/tex] to one side and constant terms to the other side:

[tex]\[ 5xy - 7y = -1 - 4x \][/tex]

Factor out [tex]\( y \)[/tex]:

[tex]\[ y(5x - 7) = -1 - 4x \][/tex]

Solve for [tex]\( y \)[/tex]:

[tex]\[ y = \frac{-1 - 4x}{5x - 7} \][/tex]

So, the inverse function is:

[tex]\[ g^{-1}(x) = \frac{-4x - 1}{5x - 7} \][/tex]

3. Find the domain of [tex]\( g^{-1}(x) \)[/tex]:

The domain of [tex]\( g^{-1}(x) \)[/tex] consists of all real numbers [tex]\( x \)[/tex] except where the denominator is zero. Solve for [tex]\( x \)[/tex] when [tex]\( 5x - 7 = 0 \)[/tex]:

[tex]\[ 5x - 7 = 0 \implies x = \frac{7}{5} = 1.4 \][/tex]

Therefore, the domain of [tex]\( g^{-1}(x) \)[/tex] is all real numbers except [tex]\( x = 1.4 \)[/tex]:

[tex]\[ \text{Domain of } g^{-1}(x): (-\infty, 1.4) \cup (1.4, \infty) \][/tex]

4. Find the range of [tex]\( g^{-1}(x) \)[/tex]:

The range of [tex]\( g^{-1}(x) \)[/tex] is the domain of [tex]\( g(x) \)[/tex]. To find where the original function [tex]\( g(x) = \frac{7x - 1}{5x + 4} \)[/tex] is undefined, solve for [tex]\( x \)[/tex] when the denominator is zero:

[tex]\[ 5x + 4 = 0 \implies x = -\frac{4}{5} = -0.8 \][/tex]

Therefore, the range of [tex]\( g^{-1}(x) \)[/tex] is all real numbers except [tex]\( y = -0.8 \)[/tex]:

[tex]\[ \text{Range of } g^{-1}(x): (-\infty, -0.8) \cup (-0.8, \infty) \][/tex]

In conclusion:

[tex]\[ g^{-1}(x) = \frac{-4x - 1}{5x - 7} \][/tex]

[tex]\[ \text{Domain of } g^{-1}(x): (-\infty, 1.4) \cup (1.4, \infty) \][/tex]

[tex]\[ \text{Range of } g^{-1}(x): (-\infty, -0.8) \cup (-0.8, \infty) \][/tex]