Use [tex]A = P\left(1 + \frac{r}{n}\right)^{nt}[/tex] where:

- [tex]A[/tex] = the amortized amount (total loan/investment amount over the life of the loan/investment)
- [tex]P[/tex] = the initial amount of the loan/investment
- [tex]r[/tex] = the annual rate of interest
- [tex]n[/tex] = the number of times interest is compounded each year
- [tex]t[/tex] = the time in years

Find how long it takes \$1,200.00 to double if it is invested at 3% compounded quarterly.

It will take [tex]\square[/tex] years. (Round your answer to 3 decimal places.)



Answer :

To solve this problem using the compound interest formula:

[tex]\[ A = P \left(1 + \frac{r}{n} \right)^{nt} \][/tex]

We need to find the time [tex]\( t \)[/tex] it takes for the initial amount [tex]\( P \)[/tex] to double given the annual interest rate [tex]\( r \)[/tex] compounded quarterly.

1. Identify given values:
- Initial principal [tex]\( P = \$1200.00 \)[/tex]
- Final amount [tex]\( A \)[/tex] when the investment doubles, so [tex]\( A = 2 \times P = 2 \times 1200.00 = \$2400.00 \)[/tex]
- Annual interest rate [tex]\( r = 0.03 \)[/tex]
- Number of times interest is compounded per year [tex]\( n = 4 \)[/tex]

2. Set up the compound interest formula:
[tex]\[ 2400 = 1200 \left(1 + \frac{0.03}{4} \right)^{4t} \][/tex]

3. Simplify inside the parentheses:
[tex]\[ 1 + \frac{0.03}{4} = 1 + 0.0075 = 1.0075 \][/tex]

4. Substitute and simplify the equation:
[tex]\[ 2400 = 1200 \left(1.0075\right)^{4t} \][/tex]

5. Divide both sides of the equation by 1200:
[tex]\[ 2 = \left(1.0075\right)^{4t} \][/tex]

6. Take the natural logarithm (ln) of both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(2) = \ln\left(\left(1.0075\right)^{4t}\right) \][/tex]

7. Apply the power rule of logarithms [tex]\( \ln\left(a^b\right) = b \ln(a) \)[/tex]:
[tex]\[ \ln(2) = 4t \cdot \ln(1.0075) \][/tex]

8. Isolate [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(2)}{4 \cdot \ln(1.0075)} \][/tex]

9. Calculate the values using known logarithms:
[tex]\[ t = \frac{\ln(2)}{4 \cdot \ln(1.0075)} \approx \frac{0.693147}{4 \cdot 0.007481} \approx \frac{0.693147}{0.029924} \][/tex]

10. Complete the division to find [tex]\( t \)[/tex]:
[tex]\[ t \approx 23.191 \][/tex]

So, it will take approximately 23.191 years for the initial amount of [tex]\( \$1200.00 \)[/tex] to double when invested at an interest rate of [tex]\( 3\% \)[/tex] compounded quarterly.