Consider circle [tex]\( T \)[/tex] with a radius of 24 in. and [tex]\( \theta = \frac{5 \pi}{6} \)[/tex] radians.

What is the length of the minor arc SV?

A. [tex]\( 20 \pi \)[/tex] in.
B. [tex]\( 28 \pi \)[/tex] in.
C. [tex]\( 40 \pi \)[/tex] in.
D. [tex]\( 63 \pi \)[/tex] in.



Answer :

To find the length of minor arc SV in circle T with radius 24 inches and a central angle [tex]\(\theta = \frac{5\pi}{6}\)[/tex] radians, we use the formula for the arc length of a circle segment. The formula for the arc length [tex]\(L\)[/tex] is given by:

[tex]\[ L = r \cdot \theta \][/tex]

where:
- [tex]\( r \)[/tex] is the radius of the circle
- [tex]\(\theta \)[/tex] is the central angle in radians.

Given:
[tex]\[ r = 24 \, \text{inches} \][/tex]
[tex]\[ \theta = \frac{5\pi}{6} \, \text{radians} \][/tex]

Now, we substitute the given values into the arc length formula:
[tex]\[ L = 24 \cdot \frac{5\pi}{6} \][/tex]

To simplify this expression:
1. Multiply the constants:
[tex]\[ 24 \cdot \frac{5\pi}{6} = 24 \cdot \frac{5}{6} \cdot \pi \][/tex]
2. Simplify the fraction [tex]\(\frac{24 \cdot 5}{6}\)[/tex]:
[tex]\[ \frac{24 \cdot 5}{6} = 4 \cdot 5 = 20 \][/tex]

Thus:
[tex]\[ L = 20 \pi \][/tex]

So, the length of minor arc SV is:
[tex]\[ 20\pi \, \text{inches} \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{20 \pi \, \text{inches}} \][/tex]