Which equation represents a circle that contains the point [tex](-5,-3)[/tex] and has a center at [tex](-2,1)[/tex]?

Distance formula: [tex]\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}[/tex]

A. [tex](x-1)^2+(y+2)^2=25[/tex]
B. [tex](x+2)^2+(y-1)^2=5[/tex]
C. [tex](x+2)^2+(y-1)^2=25[/tex]
D. [tex](x-1)^2+(y+2)^2=5[/tex]



Answer :

To determine which equation represents a circle that contains the point [tex]\((-5, -3)\)[/tex] and has a center at [tex]\((-2,1)\)[/tex], we need to follow a detailed step-by-step approach:

### Step 1: Calculate the radius of the circle

The radius [tex]\(r\)[/tex] of the circle can be found using the distance formula between the point [tex]\((-5, -3)\)[/tex] and the center [tex]\((-2, 1)\)[/tex]:

[tex]\[ r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Substitute the given coordinates:

[tex]\[ r = \sqrt{((-2) - (-5))^2 + ((1) - (-3))^2} \][/tex]

Simplify the expressions within the square root:

[tex]\[ = \sqrt{(-2 + 5)^2 + (1 + 3)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]

Thus, the radius [tex]\(r\)[/tex] is 5.

### Step 2: Write the equation of the circle

The standard equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is given by:

[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

For our circle, the center is [tex]\((-2, 1)\)[/tex] and the radius [tex]\(r\)[/tex] is 5. Hence, [tex]\(h = -2\)[/tex], [tex]\(k = 1\)[/tex], and [tex]\(r^2 = 25\)[/tex]. Therefore, the equation of our circle is:

[tex]\[ (x + 2)^2 + (y - 1)^2 = 25 \][/tex]

### Step 3: Identify the correct equation from the given options

Given the options are:
1. [tex]\((x - 1)^2 + (y + 2)^2 = 25\)[/tex]
2. [tex]\((x + 2)^2 + (y - 1)^2 = 5\)[/tex]
3. [tex]\((x + 2)^2 + (y - 1)^2 = 25\)[/tex]
4. [tex]\((x - 1)^2 + (y + 2)^2 = 5\)[/tex]

The correct equation from the options is:

[tex]\( \boxed{(x + 2)^2 + (y - 1)^2 = 25} \)[/tex]

Other Questions