Determine the solution to the inequality.

[tex]\[ |4x - 4| \geq 8 \][/tex]

A. [tex]\( x \leq -1 \)[/tex] or [tex]\( x \geq 3 \)[/tex]

B. [tex]\( x \leq -2 \)[/tex] or [tex]\( x \geq 3 \)[/tex]

C. [tex]\( x \leq -3 \)[/tex] or [tex]\( x \geq 4 \)[/tex]

D. [tex]\( x \leq -4 \)[/tex] or [tex]\( x \geq 4 \)[/tex]



Answer :

To solve the inequality [tex]\( |4x - 4| \geq 8 \)[/tex], we must consider the definition of the absolute value function. The absolute value inequality [tex]\( |A| \geq B \)[/tex] implies that [tex]\( A \geq B \)[/tex] or [tex]\( A \leq -B \)[/tex]. We will apply this rule to our given inequality.

First, set up the two separate inequalities:

[tex]\[ 4x - 4 \geq 8 \][/tex]
[tex]\[ 4x - 4 \leq -8 \][/tex]

We will solve each of these inequalities separately:

1. Solving [tex]\( 4x - 4 \geq 8 \)[/tex]:

[tex]\[ 4x - 4 \geq 8 \][/tex]

Add 4 to both sides:

[tex]\[ 4x \geq 12 \][/tex]

Divide both sides by 4:

[tex]\[ x \geq 3 \][/tex]

2. Solving [tex]\( 4x - 4 \leq -8 \)[/tex]:

[tex]\[ 4x - 4 \leq -8 \][/tex]

Add 4 to both sides:

[tex]\[ 4x \leq -4 \][/tex]

Divide both sides by 4:

[tex]\[ x \leq -1 \][/tex]

Thus, the solution to the inequality [tex]\( |4x - 4| \geq 8 \)[/tex] is:

[tex]\[ x \leq -1 \quad \text{or} \quad x \geq 3 \][/tex]

Therefore, the correct answer is:

[tex]\(\boxed{x \leq -1 \text{ or } x \geq 3}\)[/tex]