A recent poll of 85 randomly selected cable subscribers found that [tex]$39 \%$[/tex] would be willing to pay extra for a new nature channel. To the nearest percent, with a confidence level of [tex]$95\%$[/tex] ([tex]$z^*$[/tex]-score 1.96), what is the confidence interval for the proportion of cable subscribers who would be willing to pay extra for the new nature channel?

The error margin is given by:
[tex]\[ E = z^{\star} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \][/tex]

The confidence interval is:
[tex]\[ CI = \hat{p} \pm E \][/tex]

A. Between [tex]$10 \%$[/tex] and [tex]$39 \%$[/tex]
B. Between [tex]$29 \%$[/tex] and [tex]$49 \%$[/tex]
C. Between [tex]$31 \%$[/tex] and [tex]$47 \%$[/tex]
D. Between [tex]$38 \%$[/tex] and [tex]$40 \%$[/tex]



Answer :

To determine the confidence interval for the proportion of cable subscribers who would be willing to pay extra for a new nature channel, follow these steps:

1. Identify the given data:
- Sample size ([tex]\(n\)[/tex]): [tex]\(85\)[/tex]
- Sample proportion ([tex]\(\hat{p}\)[/tex]): [tex]\(0.39\)[/tex] or [tex]\(39\%\)[/tex]
- [tex]\(z^*\)[/tex]-score for [tex]\(95\%\)[/tex] confidence level: [tex]\(1.96\)[/tex]

2. Calculate the margin of error ([tex]\(E\)[/tex]):
[tex]\[ E = z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \][/tex]

3. Compute the margin of error:
[tex]\[ E \approx 1.96 \times \sqrt{\frac{0.39 \times (1 - 0.39)}{85}} \][/tex]
[tex]\[ E \approx 0.10369166056433002 \][/tex]

4. Determine the confidence interval ([tex]\(C\)[/tex]):
[tex]\[ C = \hat{p} \pm E \][/tex]

5. Calculate the lower and upper bounds of the confidence interval:
[tex]\[ C_{\text{lower}} = \hat{p} - E = 0.39 - 0.10369166056433002 \approx 0.28630833943567 \][/tex]
[tex]\[ C_{\text{upper}} = \hat{p} + E = 0.39 + 0.10369166056433002 \approx 0.493691660564330 \][/tex]

6. Convert the bounds to percentages:
[tex]\[ C_{\text{lower percent}} \approx 28.63\% \][/tex]
[tex]\[ C_{\text{upper percent}} \approx 49.37\% \][/tex]

Therefore, to the nearest percent, the confidence interval for the proportion of cable subscribers who would be willing to pay extra for the new nature channel is approximately between [tex]\(29\%\)[/tex] and [tex]\(49\%\)[/tex].