Answer :

Given the condition [tex]\(a + b + c = 0\)[/tex], we are asked to prove the following identity:

[tex]\[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3 \][/tex]

### Step-by-Step Solution:

1. We start with the given condition:

[tex]\[ a + b + c = 0 \][/tex]

2. Consider the expression we want to prove:

[tex]\[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} \][/tex]

3. Combine the fractions by multiplying by [tex]\(abc\)[/tex] (common denominator) to simplify:

[tex]\[ \left( \frac{a^2}{bc} \right) (abc) + \left( \frac{b^2}{ca} \right) (abc) + \left( \frac{c^2}{ab} \right) (abc) \][/tex]

4. Simplify each term:

[tex]\[ \frac{a^2 abc}{bc} + \frac{b^2 abc}{ca} + \frac{c^2 abc}{ab} \][/tex]

This reduces to:

[tex]\[ a^3 + b^3 + c^3 \][/tex]

5. Recall the identity for the sum of cubes and apply the given condition [tex]\(a + b + c = 0\)[/tex]:

[tex]\[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) \][/tex]

6. Substitute [tex]\(a + b + c = 0\)[/tex] into the identity:

[tex]\[ a^3 + b^3 + c^3 - 3abc = 0 \][/tex]

Therefore, we have:

[tex]\[ a^3 + b^3 + c^3 = 3abc \][/tex]

7. Substitute back into the simplified expression:

[tex]\[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = \frac{a^3 + b^3 + c^3}{abc} \][/tex]

8. Since [tex]\(a^3 + b^3 + c^3 = 3abc\)[/tex], substitute this in:

[tex]\[ \frac{a^3 + b^3 + c^3}{abc} = \frac{3abc}{abc} \][/tex]

9. Simplify the right-hand side:

[tex]\[ \frac{3abc}{abc} = 3 \][/tex]

Thus, we have proven that:

[tex]\[ \frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3 \][/tex]