Answer :
Sure, let's break down the enthalpy changes for each reaction step-by-step:
1. First Reaction:
[tex]\[ \frac{4}{3} PCl_3(g) \rightarrow \frac{1}{3} P_4(s) + 2 Cl_2(g) \][/tex]
This reaction can be derived from the given reaction:
[tex]\[ P_4(s) + 6 Cl_2(g) \rightarrow 4 PCl_3(g) \quad \Delta H = -1148 \text{ kJ} \][/tex]
By reversing the given reaction and adjusting for the coefficients, we get:
[tex]\[ 4 PCl_3(g) \rightarrow P_4(s) + 6 Cl_2(g) \][/tex]
To balance the coefficients:
[tex]\[ \frac{4}{3} PCl_3(g) \rightarrow \frac{1}{3} P_4(s) + 2 Cl_2(g) \][/tex]
The enthalpy change for this reaction is:
[tex]\[ \Delta H = \left(-\frac{1}{3}\right) \times (-1148 \text{ kJ}) = 383 \text{ kJ} \][/tex]
2. Second Reaction:
[tex]\[ 4 PCl_3(g) \rightarrow P_4(s) + 6 Cl_2(g) \][/tex]
This can be derived by simply reversing the given reaction:
[tex]\[ 4 PCl_3(g) \rightarrow P_4(s) + 6 Cl_2(g) \][/tex]
The enthalpy change for this reaction is the negative of the given reaction:
[tex]\[ \Delta H = 1148 \text{ kJ} \][/tex]
3. Third Reaction:
[tex]\[ \frac{1}{4} P_4(s) + \frac{3}{2} Cl_2(g) \rightarrow PCl_3(g) \][/tex]
This reaction can be derived from the given reaction:
[tex]\[ P_4(s) + 6 Cl_2(g) \rightarrow 4 PCl_3(g) \quad \Delta H = -1148 \text{ kJ} \][/tex]
To balance the coefficients:
[tex]\[ \frac{1}{4} P_4(s) + \frac{3}{2} Cl_2(g) \rightarrow PCl_3(g) \][/tex]
The enthalpy change for this reaction is:
[tex]\[ \Delta H = \left(\frac{1}{4}\right) \times -1148 \text{ kJ} = -287 \text{ kJ} \][/tex]
Finally, we complete the table with these enthalpy changes:
[tex]\[ \begin{tabular}{|c|c|} \hline reaction & $\Delta H$ \\ \hline \frac{4}{3} PCl_3(g) \rightarrow \frac{1}{3} P_4(s) + 2 Cl_2(g) & 383 \text{ kJ} \\ \hline 4 PCl_3(g) \rightarrow P_4(s) + 6 Cl_2(g) & 1148 \text{ kJ} \\ \hline \frac{1}{4} P_4(s) + \frac{3}{2} Cl_2(g) \rightarrow PCl_3(g) & -287 \text{ kJ} \\ \hline \end{tabular} \][/tex]
1. First Reaction:
[tex]\[ \frac{4}{3} PCl_3(g) \rightarrow \frac{1}{3} P_4(s) + 2 Cl_2(g) \][/tex]
This reaction can be derived from the given reaction:
[tex]\[ P_4(s) + 6 Cl_2(g) \rightarrow 4 PCl_3(g) \quad \Delta H = -1148 \text{ kJ} \][/tex]
By reversing the given reaction and adjusting for the coefficients, we get:
[tex]\[ 4 PCl_3(g) \rightarrow P_4(s) + 6 Cl_2(g) \][/tex]
To balance the coefficients:
[tex]\[ \frac{4}{3} PCl_3(g) \rightarrow \frac{1}{3} P_4(s) + 2 Cl_2(g) \][/tex]
The enthalpy change for this reaction is:
[tex]\[ \Delta H = \left(-\frac{1}{3}\right) \times (-1148 \text{ kJ}) = 383 \text{ kJ} \][/tex]
2. Second Reaction:
[tex]\[ 4 PCl_3(g) \rightarrow P_4(s) + 6 Cl_2(g) \][/tex]
This can be derived by simply reversing the given reaction:
[tex]\[ 4 PCl_3(g) \rightarrow P_4(s) + 6 Cl_2(g) \][/tex]
The enthalpy change for this reaction is the negative of the given reaction:
[tex]\[ \Delta H = 1148 \text{ kJ} \][/tex]
3. Third Reaction:
[tex]\[ \frac{1}{4} P_4(s) + \frac{3}{2} Cl_2(g) \rightarrow PCl_3(g) \][/tex]
This reaction can be derived from the given reaction:
[tex]\[ P_4(s) + 6 Cl_2(g) \rightarrow 4 PCl_3(g) \quad \Delta H = -1148 \text{ kJ} \][/tex]
To balance the coefficients:
[tex]\[ \frac{1}{4} P_4(s) + \frac{3}{2} Cl_2(g) \rightarrow PCl_3(g) \][/tex]
The enthalpy change for this reaction is:
[tex]\[ \Delta H = \left(\frac{1}{4}\right) \times -1148 \text{ kJ} = -287 \text{ kJ} \][/tex]
Finally, we complete the table with these enthalpy changes:
[tex]\[ \begin{tabular}{|c|c|} \hline reaction & $\Delta H$ \\ \hline \frac{4}{3} PCl_3(g) \rightarrow \frac{1}{3} P_4(s) + 2 Cl_2(g) & 383 \text{ kJ} \\ \hline 4 PCl_3(g) \rightarrow P_4(s) + 6 Cl_2(g) & 1148 \text{ kJ} \\ \hline \frac{1}{4} P_4(s) + \frac{3}{2} Cl_2(g) \rightarrow PCl_3(g) & -287 \text{ kJ} \\ \hline \end{tabular} \][/tex]