What are the coordinates of the point at which the graph of the equation [tex]5x - 3y + 2 = 0[/tex] crosses the [tex]y[/tex]-axis?

A. [tex](-1, 3)[/tex]
B. [tex]\left(0, -\frac{2}{3}\right)[/tex]
C. [tex](1, 3)[/tex]
D. [tex]\left(0, \frac{2}{3}\right)[/tex]
E. [tex]\left(-\frac{2}{5}, 0\right)[/tex]



Answer :

To determine the point at which the graph of the equation [tex]\(5x - 3y + 2 = 0\)[/tex] crosses the [tex]\(y\)[/tex]-axis, we need to find the [tex]\(y\)[/tex]-coordinate when [tex]\(x = 0\)[/tex].

1. Substitute [tex]\(x = 0\)[/tex] into the equation:

[tex]\[ 5(0) - 3y + 2 = 0 \][/tex]

This simplifies to:

[tex]\[ -3y + 2 = 0 \][/tex]

2. Solve for [tex]\(y\)[/tex]:

Subtract 2 from both sides of the equation:

[tex]\[ -3y = -2 \][/tex]

Then, divide both sides by [tex]\(-3\)[/tex]:

[tex]\[ y = \frac{-2}{-3} = \frac{2}{3} \][/tex]

Thus, the coordinates where the graph crosses the [tex]\(y\)[/tex]-axis are [tex]\((0, \frac{2}{3})\)[/tex].

Therefore, the correct answer is:
D) [tex]\(\left(0, \frac{2}{3}\right)\)[/tex].